
Command Hijacking on Voice-Controlled IoT
in Amazon Alexa Platform

Wenbo Ding
University at Buffalo

wenbodin@buffalo.edu

Song Liao
Clemson University
liao5@clemson.edu

Long Cheng
Clemson University

lcheng2@clemson.edu

Xianghang Mi
University of Science and Technology

of China
xmi@ustc.edu.cn

Ziming Zhao
University at Buffalo
zimingzh@buffalo.edu

Hongxin Hu
University at Buffalo
hongxinh@buffalo.edu

ABSTRACT

Voice Personal Assistants (VPA) are becoming popular entry points
to control connected devices in an IoT environment, e.g., by invok-
ing Amazon Alexa voice-apps (called skills) to turn on/off lights
through voice commands. Amazon Alexa platform allows third-
party developers to build skills and publish them to marketplaces,
which greatly extends the functionalities of VPA. Despite the many
convenient features, there are increasing security and safety con-
cerns about VPA-controlled IoT systems. Previous research demon-
strated the prevalence of potentially malicious or problematic skills
in the marketplace. However, existing works mainly focus on non-
IoT skills (e.g., skills under the Kids and Health categories). The
security and safety risks of IoT skills are largely under-explored.

In this work, we discover new vulnerabilities in the Amazon
Alexa platform, which allows malicious third-party developers to
hijack Alexa’s built-in voice commands to invoke malicious IoT
skills. We present three new attacks hijacking Alexa’s built-in IoT
commands, including Command Invocation Confounding Attack,
Custom Command Attack, and Command-Intent Hijacking Attack.
We also find a vulnerability that allows arbitrary control of smart-
home devices in the back-end code. We evaluate the success rate
for each attack and prove that they can be used by malicious devel-
opers. In particular, we demonstrate that skills in the Connected
Car category using Alexa’s built-in intents can be hijacked by cus-
tomized IoT skills. We also design and implement IoTSkillAnalyzer,
a dynamic testing tool to examine IoT skills on the Alexa skills
store. After analyzing 488 Alexa 3rd-party IoT skills using IoTSkill-
Analyzer, we identified 52 skills with potential command hijacking
attacks. We also found that 26 suspicious skills have hidden behav-
iors potentially caused by the Skill Back-end Code Manipulation
vulnerability after they receive normal commands, such as failing
to control devices, taking hidden actions, and providing wrong
response information to users.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0482-6/24/07. . . $15.00
https://doi.org/10.1145/3634737.3657010

CCS CONCEPTS

• Security and privacy→Web application security; • Software

and its engineering→ Dynamic analysis.

KEYWORDS

Amazon Alexa, IoT, Hijacking Attack

ACM Reference Format:

WenboDing, Song Liao, LongCheng, XianghangMi, Ziming Zhao, andHongxin
Hu. 2024. Command Hijacking on Voice-Controlled IoT in Amazon Alexa
Platform. In ACM Asia Conference on Computer and Communications Secu-
rity (ASIA CCS ’24), July 1–5, 2024, Singapore, Singapore. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3634737.3657010

1 INTRODUCTION

Voice Personal Assistants (VPA) allow users to control IoT devices
using voice commands, which brings convenience to interactions
with IoT devices in a smart home environment. People are increas-
ingly using VPA to control IoT devices, such as smart lights, ther-
mostats, locks, and connected vehicles. According to Juniper Re-
search, there will be 8.4 billion VPA units by 2024, exceeding the
current world’s population [1]. However, the increased use of VPA
for controlling IoT devices also brings security and safety concerns.

Amazon Alexa is currently the largest VPA platform that allows
developers to build third-party voice apps (i.e., skills) and publish
them to the skill store. There are now over 100,000 skills available in
the Alexa Skills store. Such an open ecosystem greatly extends the
functionalities of VPA, where third-party developers can enhance
VPA with new capabilities. On the other hand, the openness of VPA
platforms also gives unscrupulous skill developers an opportunity
to publish dangerous skills in the store [11]. Researchers in [24, 37]
demonstrated that VPA systems are vulnerable to voice squatting
attacks. Voice squatting is a type of cyber attack wherein a fraudu-
lent voice “skill” or “action” is developed to mimic a genuine one.
The goal of the attacker is to get the user to invoke the malicious
voice skill by saying a command that the attacker has registered to
trigger the attack. This can be accomplished by using a name that is
phonetically similar to a benign voice skill or by using a command
that is pronounced similarly to a command used by a benign skill.
Several recent works conducted a dynamic analysis of skills to iden-
tify security and privacy risks by invoking and interacting with
skills [13, 21, 32, 36]. However, these studies only analyzed non-IoT
skills (e.g., skills under the Kids and Health categories [25, 32]). Our
work focuses on the security of IoT skills.

https://doi.org/10.1145/3634737.3657010
https://doi.org/10.1145/3634737.3657010

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Wenbo Ding, Song Liao, Long Cheng, Xianghang Mi, Ziming Zhao, and Hongxin Hu

Past research has shown the ease of malicious skills (that collect
user-sensitive information or contain inappropriate content) being
certified by the Amazon Alexa platform due to a lenient skill cer-
tification process [11]. An essential step for achieving the attack
purposes is to make these malicious skills invoked by users. For
example, a privacy-invasive skill can only collect user data if it is
selected and invoked by the VPA platform to interact with users.
Therefore, which skill is being invoked plays an essential role in
the attack chain.

In this work, we aim to demystify the skill invoking in the Ama-
zon Alexa platform and exploit the potential vulnerabilities in the
skill invoking process. Alexa employs a ranking process to deter-
mine the most relevant skill for a given voice command. However,
for the built-in intents, the skill category and skill context can im-
pact the skill ranking results, which provides an opportunity for
malicious developers to launch command hijacking attacks.

By manipulating the vulnerabilities in the skill ranking system,
third-party commands can have higher invocation priorities than
Alexa’s built-in commands to control IoT devices. In this case, an
attacker could publish a malicious IoT skill, which will be always
invoked whenever users issue Alexa’s built-in voice commands
to control IoT devices. This potential vulnerability can lead to a
realistic threat, which we call command hijacking attack. Differ-
ent from existing squatting attacks [14, 24, 37], which root in the
fact that different users can have different but similar accents and
commanding behaviors. Such a large search space gives attackers
a good opportunity to squat a victim skill by registering mislead-
ing or similar pronounced commands. However, the third-party
commands in our work can be exactly the same as the targeted
voice command of a benign skill. In command hijacking attacks,
even if VPA users invoke a skill in the most correct manner, we
demonstrate that attackers can hijack the built-in voice commands
without registering any similar pronounced commands. We also
observe that there exist skills with hidden actions in the back-end
code. For example, the home manager skill contains a hidden action
“turn on/off the garage door” while executing the benign action
“turn off all lights”. In this case, after the user leaves home (which
triggers the away mode) and turns off all lights, the skill may unex-
pectedly trigger a specific smart garage door opener. We implement
such attacks by publishing IoT skills and testing the skill ranking
under different conditions. In addition, we found that the IoT skills
in the connected car category can also be hijacked with the same
method.

In this work, we make the following contributions:

• Three new command hijacking attacks. We found three attacks
that can be used for hijacking Alexa’s built-in IoT command.
1) Attackers can use the device name as a skill’s invocation
name, such as “bedroom door” so that the skill will be trig-
gered first instead of the built-in IoT command. 2) For skills
in specific categories, such as “Q&A”, the custom command
can have a higher priority than the built-in IoT command. So
attackers can set the custom command as same as a built-in
IoT device control command such as “Alexa, open bedroom
door”, then the custom command and skill will be invoked
first. 3) For skills in the smart home category, attackers can

define customized commands and increase their priority to
hijack the built-in IoT command.

• Skill back-end code manipulation vulnerability.We found at-
tackers can even control users’ devices arbitrarily after users
invoke an IoT command. Working with the third command
hijacking attack we proposed above, attackers can mislead
users to first invoke a wrong skill and then control any de-
vice in the back end while users assume benign skills are
invoked.

• Comprehensive security analysis of IoT skills. To understand
the potential risks of command hijacking in existing IoT
skills, we designed and implemented a system, named IoT-
SkillAnalyzer, and conducted a comprehensive analysis of
IoT skills in the Alexa skill store. We tested 488 Alexa 3rd-
party IoT skills and identified 52 skills with command hi-
jacking issues. We also found 26 skills have back-end code
manipulation behaviors when it comes to controlling IoT
devices, such as failing to control devices, doing unexpected
tasks, or providing wrong device-controlling information to
users 1.

Ethical Considerations.We regard ethical considerations as
a crucial aspect of our work. To ensure that the Alexa system and
its regular users are not adversely affected by our testing skills, we
have taken several measures:

• We include comments in both the skill descriptions and skill
responses to inform users that the skill is intended for testing
purposes.

• We do not embed malicious code in the backend of our test-
ing skills. Instead, we design the skills to provide specified
text when triggered, without controlling any real home de-
vices. Although our testing demonstrates that it is possible to
control devices usingmalicious code, we avoid implementing
this in our published backend code.

• We select the “certify and publish later” during the skill sub-
mission. After the skill is certified, we publish it at midnight
to ensure that no one has the opportunity to use these testing
skills and withdraw them immediately after the completion
of our tests. According to our skill usage history, no other
users have enabled our testing skills.

Responsible Disclosure. We have reported our findings to the
Amazon Alexa team. This paper’s discoveries provide the Alexa
team with the information needed to address the vulnerabilities
and maintain user trust in the system.

2 BACKGROUND

Amazon Alexa platform is one of the largest VPA platforms and
it allows third-party developers to publish voice apps, which are
named skills, to the Alexa skills store. To help users better under-
stand how to interact with skills, Alexa requires that skills need to
provide not only a description but also several utterances, which
are used to invoke skills or call skill functions, for users. For each
skill, Alexa also displays the basic information of a skill on the skill
webpage, such as skill name, developers, utterances, description,

1The details of our results, datasets, source code, and real-world demos of hijacking a
car skill are available at https://github.com/voice-assistant-research/IoT-skills.

https://github.com/voice-assistant-research/IoT-skills

Command Hijacking on Voice-Controlled IoT in Amazon Alexa Platform ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

“Alexa, open
bedroom door”

Alexa Developer
Console

Alexa Skill
Blueprints Console

AWS
Console

Back-end
Code

IoT Devices

Benign skill
invocation path

Set skill name as:
“bedroom door”

Trigger smart-home built-in intent to
change bedroom door status to “Open”

1

2

3

Q&A Skill:
Custom Q: Alexa,

open bedroom door
Custom A: Okay, I

have done that

Adversarial Skill Invocation
(Higher Priority)

Customized Intent

Invoke the skill:
“bedroom door”

Invoke Q&A skill

Skill DevelopmentMalicious Skills

Invoke the skill with
customized intents

Manipulate skill
back-end code

Skill
Discovery
Amazon

Alexa Cloud

Figure 1: Alexa smart home command processing.

privacy policy, etc. This information helps users select a suitable
skill and know how to use the skill.

2.1 Alexa Skill Invocation

Invoke skill with invocation name. Different from the skill
name, skills also have the “invocation name” for skill invocation
purposes. For skills shown on the Alexa skills store, users can
invoke the skill with a sentence consisting of a wake word “Alexa”,
a launch word like “open” or “launch”, and a skill invocation name,
such as “Alexa, open Daily Horoscopes’ or “Alexa, launch Daily
Horoscopes”. The skill invocation name is also shown on the skill’s
introduction webpage. Most of the utterances on the skill webpages
are about how to invoke a skill using the invocation name.
Invoke skill function without invocation name. Users can also
directly call skill functions without a skill invocation name. When
Alexa receives a request from users, such as “Alexa, play music” or
“Alexa, open the door”, Alexa will look for the skills that might fulfill
the request. For these skills, they should first define such a request
sentence in their skills so that Alexa knows the skill can process
such a request. Usually, such skills will also provide utterances
about how to call such functions on the webpage. For example, the
skill “DiCEhome” provides an utterance “Alexa, open dice smart”,
which includes the invocation name to invoke the skill and users
can have more interactions later. It also provides another utterance
“Alexa, turn on the switch” so that users can skip the step of skill
invocation and directly call the function of this skill.

2.2 Skill Development

Figure 1 shows the two typical ways developers can develop a skill:
one is the Alexa Developer Console and another one is the Alexa
Skill Blueprints Console.
Developer console.AmazonAlexa provides several different places
for developers to develop skills in different ways. Commonly, devel-
opers can develop skills in the “Alexa Developer Console”, in which
developers can select a model, design the skill interaction model,
and write the back-end code for skill functions. After that, develop-
ers can provide skill manifest data (such as skill name, description,
category, and so on), and submit the skill to the certification process.
The interaction model [3] defines how users interact with a skill,
such as which type of user requests (voice commands) the skill can
process.

There are three types of data defined in the interaction model:
intent, slot, and sample utterances. An intent represents an action
that fulfills a user’s spoken request. Sample utterances are a set
of likely spoken phrases mapped to the intents, and developers
should include representative phrases so that the model can better
learn the sentence pattern. In addition, intents can optionally have
arguments called slots. The slot is the variable that can capture
a specific type of user’s reply, such as username or user country.
Amazon provides over 100 built-in slot types for capturing different
data, such as “AMAZON.FirstName” trained with thousands of
popular first names. The user request is then transferred to the
back-end code. The back-end code defines the functions, which
are named “Intent Handler”, for processing a request. For example,
when a user asks “What is the time now”, the “TimeIntent” can
capture the request. To handle the request, the “TimeIntentHandler”
in the back-end code is called and it will call other functions or
APIs to process the request and give an answer to users.
Blueprints console. Alexa also provides a “Blueprint Console” for
developers to develop skills quickly. The Blueprint console con-
tains 70 blueprints that perform specific functions. After selecting
a corresponding blueprint, developers only need to change the
skill content without editing the interaction model and back-end
code, which makes the development easier. For example, there is a
“Whose Turn” blueprint, in which Alexa will figure out whose turn
it is to do something. In the blueprint, developers only need to pro-
vide the member names and design Alexa’s responses such as “OK,
let me pick” or “And the winner is: ”, then the skill is successfully
developed and ready for publishing.

2.3 Smart Home Skills

Smart home skills interaction model. VPAs such as Amazon
Alexa [7] and Google Home [20] play an important role in the
current smart home environment. Taking Alexa as an example in
Figure 1, the smart speaker receives voice commands from the user
and transfers them to the cloud server. The cloud server runs a voice
recognition model on the received audio file. After extracting the
words from the audio file, the system matches it with utterances [8]
defined in existing smart home skills with a skill ranking algorithm
by comparing the “intent” of the command with pre-defined intents
from skill developers. Given a selected skill, Alexa will call the
intent handler [9] in this skill’s back-end code, which will send a

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Wenbo Ding, Song Liao, Long Cheng, Xianghang Mi, Ziming Zhao, and Hongxin Hu

corresponding command to the Smart home device’s cloud. Differ-
ent from other categories, for skills in the “Smart Home” category,
Alexa distributes their back-end code on the AWS (Amazon Web
Service). Developers need to first design the interaction model in
the developer console and then set up the back-end code on AWS.
Developers also call the smart home built-in API to control devices
on AWS. In this way, the user can control the smart home through
the voice command.
Smart home built-in API. The Alexa smart home API [7] is a
set of interfaces between voice commands and backend code. It
is designed to unify the control interface for different vendors’
devices in the backend code. Alexa provides 26 built-in APIs for 26
types of devices, such as “Alexa.PowerController” for switches and
“Alexa.ThermostatController” for thermostats. When a user speaks
to Alexa, Alexa interprets the utterance and sends a message to the
skill that communicates the requested device. The skill reacts to the
message by changing the state of the device, such as by dimming the
light or only sending information about device states, such as telling
whether a light is on or off. By using APIs, the 3rd-party developers
do not need to define their own communication protocol between
the skill and interaction models but only need to implement the
capability interfaces that enable those interaction commands. For
example, if the developer wants the user to be able to turn a lamp
on, he/she can just enable the “Alexa.PowerController” interaction
interface in the skill without the necessity to implement the whole
backend system.

3 THREAT MODEL

Our attack targets the skill ranking process where Alexa decides
the most suitable skills among multiple ones. With our IoT com-
mand hijacking, malicious attackers can change the interaction
model between users’ IoT commands and device control behaviors.
Attackers first design several skills that override the smart home
commands and then perform denial of service attacks or smart
home back-end code manipulation.

In our paper, we have the assumption that attackers have the
capability to publish malicious skills on the skill store, and users
have the potential to inadvertently enable these harmful skills.
Previous research has demonstrated that users might unknowingly
enable malicious skills due to various reasons. For instance, voice
assistants like Alexa could recommend skills to users, leading to
the inadvertent activation of potentially harmful ones, and creating
opportunities for squatting attacks. Additionally, attackers may
intentionally publish their skills under the guise of popular or
reputable vendors, e.g., weather or shopping skills, increasing the
likelihood of users mistakenly enabling them. As a result, users may
unknowingly expose themselves to security risks by inadvertently
enabling these skills.

Once the malicious skills are enabled, attackers can manipulate
the interaction model between users’ IoT commands and device
control behaviors. When users issue a command, such as “Alexa,
open bedroom door”, the malicious skills, either using a skill with
the invocation name “bedroom door” or a Q&A skill with the default
question “Alexa, open bedroom door”, will be triggered first instead
of the default smart home skill. Typically, built-in Alexa smart
home skills, like controlling lights, have the highest priority by

default. However, attackers can change this priority by adding
similar utterances to customized intents, allowing them to take
over the execution of smart home commands. We acknowledge that
while the skill override may not be considered a vulnerability in
normal use cases, our paper highlights the potential for attackers
to manipulate it and launch our hijacking attacks.

After the malicious skills are invoked, there are three post-
exploitation actions that malicious attackers can do. First, the skill
can pretend to execute the user’s command, such as replying “Okay,
I have done that”, and doesn’t actually control the device. This can
be a denial of service (DoS) attack. Second, if a skill invocation
name is invoked and the skill is opened, it can implement other
attacks in previous works, such as voice masquerading attack [37],
because users don’t know that the skill is still opening. Third, for
smart home skills, if the malicious intent and skill are invoked, the
skill can arbitrarily control any device in the back-end code.
Existing squatting attacks. In Table 1, we summarize the differ-
ence between existing squatting attacks and our command hijacking
attacks. Different from typical squatting attacks, targeting similar
invocation names of skills. In this paper, we mainly focus on the
vulnerability of the skill-matching step after receiving a given com-
mand intent. Therefore, the attacker only needs to set up exactly the
same utterances as the built-in IoT command. Since the voice NLP
process and command ranking step are done on the Alexa platform,
we assume an attacker cannot modify these two processes directly.
The attacker can only use a customized skill to trigger the failure
of Alexa’s command ranking model.

Attack Types Squatting Attack Our Attack

Target Skill invocation process Commands and skill
choosing process

Issue reason Vocal similarity Command-Skill ranking
process

Method Register similar skill names Re-define same commands
in skills

Require enabled skills No Yes
Influence Invoke wrong skills Invoke wrong skills

Defence level Check skill pronunciation Check interaction models
Table 1: Comparison with squatting attack.

4 COMMAND HIJACKING ATTACKS

Section 2.1 explains that when users issue IoT commands to Alexa,
it is expected to locate a smart home skill with the relevant function
and activate it to carry out the task. However, our research has un-
covered three potential attacks that can compromise this command-
invoking process. We show more attack details and demonstrations
on the GitHub page: https://github.com/voice-assistant-research/
IoT-skills.

4.1 Pre-settings for attacks

We first describe our pre-settings for these attacks. In each kind of
attack, we all have a benign smart home skill enabled for compar-
ison. In the smart home setup, we have a device name as used in
the given command, e.g., “bedroom window” in attack 4.2, “front
door” in attack 4.3, and other necessary devices in attack 4.4. By
registering properly named devices, we ensure the command for

https://github.com/voice-assistant-research/IoT-skills
https://github.com/voice-assistant-research/IoT-skills

Command Hijacking on Voice-Controlled IoT in Amazon Alexa Platform ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

benign smart home skill can be executed. Then, we enable our at-
tacking skills and test whether our skills can override the execution
of benign skills.

4.2 Invocation Confounding Attack

In the first attack, we found that Alexa will always invoke a skill
instead of a commandwhen they have the same invocation sentence.
For example, if a skill has an invocation name “bedroom door” and
another skill has the function “open bedroom door”, both of them
can be invoked with “Alexa, open bedroom door”. In such a case,
the skill invocation name will always be triggered first because the
invocation name has a higher priority than the skill function.

To implement such an attack, the attacker registers a skill invo-
cation name that matches an Alexa built-in IoT voice command.
The skill invocation name will then take priority and be triggered
first. To execute this attack, the attacker sets the skill invocation
name to be the same as the device name, such as “the window”.
Assuming the user has enabled the skill when they say “Alexa, open
the window”, the Alexa platform triggers “the window” skill instead
of calling the built-in smart home skill API.

As shown in Figure 2, we created a proof-of-concept attack skill
in the blueprint console and renamed it “the bedroom window”. In
the Alexa simulator, when we invoked the command “Alexa, open
the bedroom window”, the skill was triggered first instead of the
built-in IoT command. Without the malicious skill “the bedroom
window”, the voice command “Alexa, open the bedroom window”
changes the IoT device’s status or replies “Sorry, I didn’t find a
group or device named bedroom window”.

Based on the above findings, we conclude that this invocation
confounding attack is a significant threat to IoT devices and the
users who interact with them. In the evaluation section 8.1.1, we
present our findings on this attack’s prevalence and its implications
for users and device manufacturers.

Figure 2: The hijacking skill name contains a device name.

4.3 Custom Command Attack

In this attack, we use custom commands to override commands
from pre-built APIs. We used Alexa prebuilt skills, such as Q&A
blueprints, to hijack smart home commands to demonstrate this
attack. In this attack, the attacker designs a malicious skill using
other built-in category APIs, which will be invoked whenever users
issue smart home commands. The malicious Q&A skill can manip-
ulate the benign command into malicious commands, which block
the triggering of normal skills.

We performed two types of built-in category hijacking attacks,
as shown in Table 3. We set up customized Q&A skills with smart

home commands enabled, as depicted in Figure 3a. TheQ&Abuilt-in
interaction model has a higher trigger priority than the smart home
skill, which allows it to take control of all smart home commands
and respond as if they were executed normally. This can result in
a denial-of-service attack on critical safety commands if the user
enables the Q&A skill for some purpose.

As depicted in Table 4, we evaluated the priority of the smart
home API against other APIs. Our findings showed that other skills
can overpower the smart home skills even if they use the same
command.
Attack Process. Our attack refers to the practice of registering an
Alexa skill with commands that are the same as built-in commands.
We summarize the attack chain as follows:

• An attacker creates a new smart home skill using blueprints
and gives it a name with a reasonable skill name, such as
“Door Control”.

• As shown in Figure 3a, We implement this attack by enabling
the same commands in the blueprint skills or customized
skills. Using other category APIs, the attacker creates a skill
with a high-priority built-in API, such as “Q&A”. Then, they
can define targeted commands in this skill, such as “close
the garage door”.

• Once attackers publish their skills and let users enable them.
Then if users give an identical command as in the malicious
skill, such as “close the garage door”, Alexa’s ranking system
will trigger the malicious Q&A skill. Therefore, the original
command will not be triggered as shown in Figure 3b.

The targeted commands for customized intent hijacking can
come from any skill with lower-priority built-in intent APIs, includ-
ing those in categories like “music”. To demonstrate the feasibility
of this attack, we published two malicious skills with smart home
commands based on blueprints. These skills were successfully pub-
lished as Q&A and game dialogue. We also tested and published 24
other categories of skills, such as shopping, weather, and meeting
skills on the Alexa platform. Out of the 24 skills that we submitted,
19 were approved. However, in a recent update, Alexa has stopped
publishing Q&A blueprint skills.

Furthermore, we searched the skill market and found similar
blueprint skills. In the evaluation section, we present our findings
on the prevalence of this attack and its potential implications for
users and device manufacturers. Overall, our results highlight the
significant threat that malicious actors pose to the security and
privacy of IoT devices and their users by exploiting the Alexa plat-
form’s built-in intents.

4.4 Command-Intent Hijacking Attack

In this attack, we attempt to hijack Alexa’s built-in smart home
intents using developer-customized smart home intents. We also
prove that we can hijack car-related skills in Section 6.3. This attack
bears similarities to the previously discussed custom command
attack but differs in two significant ways. First, unlike the com-
mand attack, this strategy does not leverage the ranking advan-
tage typically afforded to certain skill categories. Under normal
circumstances, official smart home commands are prioritized over
third-party skills, preventing the latter from overriding official com-
mands. However, our findings reveal a method by which third-party

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Wenbo Ding, Song Liao, Long Cheng, Xianghang Mi, Ziming Zhao, and Hongxin Hu

(a) Set responses for QA skills.

(b) With or without enabling

our QA skills.

Figure 3: The responses from benign and QA skills.

commands can manipulate the skill selection process to gain higher
execution priority, thereby enabling a customized skill to usurp
control of official commands. Secondly, unlike Q&A skills with no
customizable backend code, the fully customizable backend of these
customized skills substantially increases the potential for severe
consequences.

4.4.1 Attack Preparation for customized intents. In order to launch
these attacks, attackers primarily need to set up and publish their
own skills. In these malicious skills, the attacker must create a
deceptive interaction model and corresponding backend code. To
attack the skill selection mechanism, the attacker must define their
customized intents in a detailed manner, including additional con-
text information such as utterances, slots, and descriptions. This
could lead the Alexa skill ranking system to prioritize the malicious
skill over other relevant ones when a specific voice command is
given. The attacker must also set up appropriate backend code to
handle the voice commands. However, it is important to note that
the backend code does not directly affect the skill selection mech-
anism, and we will discuss details of the backend code attack in
Section 4.

Set the interaction model on Alexa: The interaction model
can be set up in variousways, but tomaintain consistency across our
attacks, we added additional smart home commands to the model.
As demonstrated in the previous attack, an attacker can override
smart home skills by setting up a conflicting command such as “lock
the front door” in a Q&A skill. In the following section, we show
how attackers can use customized commands to hijack Alexa’s
smart home APIs. We focused on typical smart home devices that
may pose security or safety concerns and implemented the attack
skills with commands from Table 2. For each command, we created
a customized intent with 20 similar commands and 2 slots. Similar
commands were generated using the Alexa utterance recommenda-
tion system. We also implemented the “CanFulfillIntentRequest [5]”
for the intent, which can improve the customized intent parser’s
ability for given commands.

4.4.2 Attack Results. To demonstrate the effectiveness of the comm-
and-intent hijacking attack, we designed and published a malicious
skill with specially crafted intents for controlling a garage door. We
ensured that the skill would be invoked every time users attempted
to close the smart door and then manipulated the benign commands

No. Conflicted Commands
1 Open the garage door.
2 Lock my front door.
3 Close garage door.
4 Turn on the garage door.
5 Turn off the garage door.

Table 2: Commands used in attacking skills.

into malicious ones that could control any other devices on the
platform. We created a customized intent called “Close garage door”
based on the settings described earlier and claimed that it could
control a garage door using the voice commands listed in Table 2.

We published a skill with the command “close the garage door”,
which is the same as the official API command. The backend code
of the skill simply sleeps for 10 seconds and gives a fake response.
We enabled this skill using another account and tested which skill
was triggered for the voice command. We found that the official
intent was not triggered, and the garage door did not move at all.

In general, if the Alexa system chooses to trigger the attacker’s
skill instead of the official API, the malicious backend code could be
triggered. In a real scenario, the attacker could define the backend
code to execute more malicious actions. For example, the developer
could redefine the "close the garage door" command to “door.unlock”
(with a 600-second delay) in their skill and trick Alexa into trig-
gering this command instead of the benign one in the official skill.
Then it could create serious safety issues for the user.

We give a comparison of different attack types in Table 3. The
table summarizes different types of command-hijacking attacks
on Alexa-like systems. The attacks can exploit the skill ranking
process or the intent ranking process to hijack the official intents
and trigger malicious backend code. The attack can be divided into
three categories: built-in intents, customized intents using different
APIs, and customized intents using the same API.

5 POST-EXPLOITATIONWITH INTENT

HIJACKING

Since we can launch different intent hijacking in the last section,
we also try to explore how to utilize hijacked intents. In the above
attack phrase, we try to let Alexa trigger our malicious skills using
a benign intent. After the malicious skill is triggered, we have two
ways to explore vulnerabilities in the skill’s backend code.

5.1 DoS Attack

Three attacks can all be used for DoS (Denial-of-Service) attacks
for hijacked commands. For a given command, all three kinds of
attacks can redirect the requested command to unrelated actions.

All three of our attack types can be used to launch a denial-of-
service attack on Alexa skills. For example, in the first invocation
confounding attack, invocation name hijacking, we can use a ma-
licious skill to hijack various commands for the device or home
mode switches, such as “open away mode”, and the malicious skill
triggered can execute other commands or no action at all. In the
second and third types of customized intent attacks, utilizing dif-
ferent category intents or customized intents, we can also use a
malicious skill to hijack various user commands. Unlike the first
type of attack, these attacks can directly target various commands,

Command Hijacking on Voice-Controlled IoT in Amazon Alexa Platform ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Attack Name Hijacking Method Skill Development Post Exploitation
Command-Invocation
Counfounding Attack

Alexa, open { skill invocation name }
invocation name = "bedroom door"

Developer Console
Blueprint Console Voice Masquerading Attack

Custom Command Attack
Skill in Q&A category

Custom Q: Alexa, open bedroom door
Custom A: I have done that

Blueprint Console Denial of service

Command-Intent Attack
Custom intent

samples: { Alexa, open the door,
similar sample 2, ... }

Intent uses Developer Console
Backend uses AWS Console Back-end code manipulation

Table 3: Different Command hijacking attacks.

not limited to the “open” activation keyword. We can define com-
mands that are identical to official APIs, such as “close garage door”,
with no real actions in the backend code.

5.2 Back-end Code Manipulation

Alexa skills have two types of backend code. One type is hosted by
Alexa [4], and developers can directly modify and debug their code
in the Alexa web console. This type of backend code is intended
for lightweight skills, such as storytelling or shopping skills. The
other type is AWS-hosted [2], where developers can use their own
cloud-based service. In this case, developers must use AWS Lambda
to run their code. The skill’s code is treated as a Lambda function,
and developers need to create corresponding users and policies, as
well as an endpoint, and use account linking to connect personal
AWS Lambda resources with the Alexa voice interaction skill.

According to existing work [16, 33], since Alexa cannot have
access to the smart home vendor’s backend code, it is easy for
attackers to change the code after the skill is published. Besides,
Alexa’s vetting process focuses more on the interaction model and
responded answers, instead of backend code.

In smart home skills, we explore two possible ways to utilize
triggered skills’ backend code. The first one is to add unsolicited
code for certain voice commands. The second one is that skill can
claim other devices in the backend code, which can be used to
control users’ all available smart home devices.

5.2.1 Unsolicited backend code. The first vulnerability is that the
smart home code is stored at AWS or the developer’s cloud service
and Alexa cannot verify its behaviors in the backend code. Alexa
designs the system in this way because they trust the developer to
provide and manage their devices. For example, they assume the
developer of smart home skills is a device vendor, e.g., Samsung
smartThings or Philips. So basically, the developer can freely add
any actions in the backend code.

For example, they can add waiting, unrelated device actions, fake
responses, and even HTTP requests. By doing so, the attacker could
easily conduct the DoS attack, give wrong device responses, or send
user information to the attacker. They can even embed multiple
malicious actions into one benign close-door action [30], e.g., “close
the door at first, then wait 10 minutes to open the garage door
again”. In the backend code, the delay of 10 minutes can be done
by using “await sleep (600);”. Although Alexa has an active time
limitation of 30 seconds for the voice skills, they don’t have such
a limitation for the backend code. Hence, the backend code can
activate the device action at almost any time.

5.2.2 Overprivileged control of devices. Since we know that attack-
ers can implement unsolicited codes to control devices, we wanted
to determine what kind of devices they could control. The second
vulnerability of smart home systems is that a skill can claim any
device in the user’s home, as long as it is paired with Alexa. Each
smart home backend code has a discovery section for first-time
installation, as shown in Listing 1, which claims this skill should
control given devices with a specific device ID “oven-01” and a de-
fault name “Oven”. Even if the device is provided by another vendor
and should be controlled by its corresponding skill, an attacker can
claim that their skill can control such devices with common names,
like “bedroom lights” and “front door”. Then Alexa will trigger this
skill and its backend code when a related voice command is given.

In summary, if an attacker wants to control other smart home
devices with unsolicited backend code, the malicious skill needs
to perform three main steps. First, they need to define customized
intents in their malicious code and hijack benign commands. Then,
they need to claim other targeted devices in the skill and provide
unsolicited code in the voice command handler. It needs the device
type and a sequence number, such as “oven-01”. Indeed, a malicious
skill can launch attacks without requiring the unique ID of the
Alexa device. As demonstrated in Listing 1, the light device’s ID
name, “light-001”, follows a predictable pattern generated by the
Alexa system [6], making it easy to guess. So, the attacker could
brute force to guess all types of devices. We will provide more
results from the skill market in the evaluation section.

1 if name == 'Discover ':

2 adr = AlexaResponse(namespace=

3 'Alexa.Discovery ',

4 name='Discover.Response ')

5 adr.add_payload_endpoint(

6 friendly_name='Oven',

7 endpoint_id='oven -01',

8 capabilities=[capability_alexa,

9 capability_Alexa.Cooking])

10 return send_response(adr.get())

Listing 1: An example of device claim.

6 MEASUREMENT OF RELATED ATTACK

PARAMETERS

After demonstrating possible attacks, we provide further details on
our hijacking attack for customized intents. The hijacking intent
setting is critical for attack categories 2 and 3. Therefore, we explain
the mechanism behind the skill-matching process when a voice
command is given. We aim to understand how Alexa handles two
skills that define the same voice command, which we found in the
document [23]. We also explore how to leverage this skill ranking
mechanism to enhance our attacks.

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Wenbo Ding, Song Liao, Long Cheng, Xianghang Mi, Ziming Zhao, and Hongxin Hu

Category 1 Category 2

Successful Overriding

Category

Overriding

Commands

Success Rate

Q&A Q&A 7 1.0
Weather Smart Home 7 1.0
Shopping Shopping - 0
Game Smart Home - 0
Kid Smart Home - 0

Music Smart Home 7 1.0

Smart Home

General Smart Home - 0

Table 4: Using different category skills to override smart

home commands in Alexa.

6.1 Impact of Skill Category on Skill Ranking

In this part, we mainly target the second type of attack - custom
command. In this part, we explore which built-in API or blueprints
have a higher trigger priority when they all have the same com-
mands.

As shown in Figure 3b, the Q&A skills can also hijack smart
home commands, such as “unlock the front door”. When the user
enables this Q&A skill and gives a specific smart home command,
the Q&A skill will be triggered instead of the smart home skill. This
could lead to denial-of-service for security commands and even
trigger malicious backend code.

Table 4 presents the results of a study that aimed at evaluating
the success of using different category skills to override smart home
commands in Alexa. According to the results, Q&A, Weather, and
Shopping categories were able to successfully override the smart
home commands with a success rate of 1.0. On the other hand,
the Game, Kid, and General categories were unable to override the
smart home commands, as indicated by a success rate of 0. It can
be concluded that some categories, such as Q&A and Weather, are
more successful in overriding the smart home commands in Alexa
compared to others. These results suggest that some skill categories
have a high level of triggering priority in Alexa.

6.2 Impact of Skill Context on Skill Ranking

In this part, we investigate the settings for the third type of attack -
Command Intent hijacking. Based on previous studies [23, 34], the
keyword shortlisted component of the Alexa skill ranking system
considers utterance information, including intents and slots, to
generate a skill list for ranking. Therefore, we aim to understand
the impact of intent and slot settings on skill selection. To do so,
we gradually increase the number of similar commands and slots
for each targeted intent and observe when our skill is able to hijack
the benign smart home intent. Similar commands are generated
using the Alexa utterance generation function.

We list the influence of utterances in Table 5. The original ut-
terances amount is based on the given utterances from the Alexa
document examples. In our testing skills, we enable several new
skills with more utterances in each intent but keep only one slot and
a well-explained description. Then we test how many utterances
and slots a skill needs to be triggered prior to the built-in intent. In
order to get rid of the influence from usage, each skill will only be
tested until it is triggered.

Table 5 presents the results of a comparison between the original
Alexa built-in smart home commands and the customized smart
home commands. The comparison focuses on the influence of the

number of utterances and keyword slots on the ability of the cus-
tomized command to override the original command. The results
are reported for different types of devices, such as blinds, dimmable
light bulbs, entertainment devices, plugs, thermostats, air condi-
tioners, and locks.

From the table, we can see that increasing the number of both
utterances and keyword slots generally increases the success rate
of the customized command in overriding the original command.
However, the success rate varies significantly depending on the type
of device and the number of utterances and slots added. For example,
for the blinds, the success rate is 1.0 with 8 additional utterances
and 1 additional slot, while for the dimmable light bulb, the success
rate is only 0.6 with 4 additional utterances and 3 additional slots.
Overall, the table highlights the importance of considering both
utterances and keyword slots when designing a customized smart
home command. The results suggest that the optimal number of
utterances and keyword slots may vary depending on the type of
device.

Device

Category

Original

Utterancse

Additional

Utterances

Original

Slots

Additional

Slots

Success

Rate

Blinds 4 8 1 1 1.0
Dimmable
light bulb

2 4 2 3 0.6

Entertainment
device

2 5 1 2 0.8

Plugs 3 6 1 1 0.8
Thermostat 5 12 2 1 0.6

AC 5 12 2 1 0.6
Lock 8 22 1 2 0.9

Table 5: Influence of utterance and keyword slot amount.

We increase the attributed amount to the number needed to

override the original intent. The overriding succeeds when

both utterances and slots increase to the given amount (10

rounds).

Device

Category

Original

Command

Amount

Original Usage

of Built-in API

Skill

Added Usage of

Customized

Skill

Success

Rate

Blinds 4

1

10 1.0
Dimmable
light bulb

2 15 1.0

Entertainment
device

2 25 0.7

Plugs 3 16 0.8
Thermostat 5 20 0.6

AC 5 4 0.0
Lock 8 12 0.8

Table 6: Influence of usage history.We increase the attributed

amount to the number needed to override the original intent.

We also test the influence of recent skill usage. The table 6 shows
the usage history could increase its triggering priority. The columns
indicate the device category, the original command amount, the
original usage of the built-in API skill, the added usage of the
customized skill, and the success rate. The success rate measures
the percentage of times the customized skill successfully overrides
the built-in API skill. The results show that the more a customized
skill is used, the higher the likelihood of it being triggered in favor
of the built-in API skill. This can be seen by the increase in the
success rate for devices like Blinds and Dimmable light bulbs where

Command Hijacking on Voice-Controlled IoT in Amazon Alexa Platform ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

the customized skill was triggered 10 and 15 times respectively and
the success rate was 1.0.

However, it is important to note that the relationship between
usage history and trigger priority is not always linear, as seen in the
case of the Entertainment device where a higher number of triggers
(25) resulted in a lower success rate of 0.7. Overall, the usage history
of a skill plays a significant role in determining its trigger priority
when multiple skills are capable of handling a particular request.

6.3 Attacking Connected Vehicle Skills

Connected Vehicle Skills are under the same sub-category of IoT
skills as smart home skills. They share similar API definitions, com-
mand API, and backend code structure. Hence, We also conducted
tests on automotive skills commands. However, all car skills require
account linking with the device vendor, and we were only able to de-
ploy a DroneMobile [15] skill with Compustar controller [12] 4900
model on a 2010 Corolla. So, our attack can only target DroneMobile
skill’s built-in commands.

We added an additional hijacking skill with the same utterances
and gradually increased the number of similar utterances and slots.
For each utterance, we implemented two slots based on the simple
structure of the utterances, such as the verb action and the noun
as a targeted car. We continued adding the utterances until our
skill was triggered instead of the DroneMobile skill. We listed the
detailed results in Table 7. It presents the results of our testing
on the hijack ability of built-in commands from the automotive
category skills. The table includes examples of commands and the
number of hijacked utterances and slots for each command. The
results suggest that commands with fewer slots or utterances are
more susceptible to hijacking.

Targeted Commands

Normal

Utterances No.

Hijacking

Utterances No.

Normal

Slot No.

Hijacking

Slots No.

Alexa, lock my car. 1 5

1

2
Alexa, unlock my car. 1 6 2
Alexa, turn on my car. 1 6 2
Alexa, start my car with

PIN 1234.
2 7 3

Alexa, open my trunk. 1 5 2
Alexa, is my car

running?
1 6 2

Alexa, ask Drone Mobile
where is vehicle.

1 - -

Alexa, ask Drone Mobile
to lock my car.

1 - -

Table 7: Example commands in car skills.

Our method can hijack the utterances that should be sent to the
car skill with the built-in command, such as “lock/unlock my car”.
For built-in utterances, we tested all 6 exampled commands given
by the skill and were able to hijack all of them. However, we cannot
hijack the skill-specific utterances that are directly sent to the skill,
such as “ask DroneMobile to lock my car”. We showed the hijacking
demo in our demo video on the page: https://github.com/voice-
assistant-research/IoT-skills.

7 UNDERSTANDING POTENTIAL RISKS IN

EXISTING SKILLS

In this section, we present our testing methodology for examining
the vulnerabilities of Alexa smart home skills on the market. We

Figure 4: System Overview of IoTSkillAnalyzer.

first provide an overview of our design, followed by a detailed
explanation of each key component. Finally, we present our findings
on the potential risks posed by these skills.

To address the issue of potential intent hijacking and unsolicited
behavior, we propose our dynamic setup and testing system for
testing IoT skills in Figure 4. The proposed system has three main
components, a dynamic testing module, a result analysis module,
and an anomaly detection module as output.

Before our testing, we use a crawler to collect all smart home
skills’ information, including skills’ names, descriptions, sample
commands, and developers. We use the developer information to
identify 3rd-party developers and use sample commands with de-
scriptions for dynamic testing. The dynamic testing module in-
cludes two parts, utterance selection, and skill&device management.
The utterance selection module chooses proper utterances from
the collected utterances/commands database to test enabled skills
through a skill simulator (❶). Here, we refer to the utterance and
command as the same thing.

Skill and device management enables skills from the list and
identifies related devices that might be used as well as changing
the virtual device setting on the Alexa platform, such as the device
name, group, and updating status (❷). The result analysis module
has two sub-components, log information analysis and baseline
generation(❸). The output is skills with potential intent hijacking
and unsolicited behaviors (❹).
Command Selection. For built-in intents, we could directly get
all sample utterances from Alexa document [9], which contains
134 smart home utterances. For 3rd-party skills, developers provide
sample utterances on skill introduction pages in the marketplace.
We also found that some developers have left utterances in skill
descriptions and we identify those utterances in double-quotes.
During testing, we choose the related utterance (thermostat-related
commands) for the testing skill (a thermostat control skill).
Skill and Devices Management.Most of the smart home skills re-
quire real devices from vendors to register an account and then link
it to the Alexa platform before being enabled. Limited by available
devices, we cannot test most of the skills with this linking require-
ment. However, we found that there are three kinds of account
linking processes in practice: standard account linking, Amazon
OAuth account linking, and account zip authorization. We are able
to enable and test the latter two kinds of linking. IoTSkillAnalyzer
can enable these skills on their websites by clicking and authorizing
skills with the necessary information.

The current Alexa platform also requires device installation be-
fore using related voice commands. Otherwise, the Alexa platform

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Wenbo Ding, Song Liao, Long Cheng, Xianghang Mi, Ziming Zhao, and Hongxin Hu

will reject the tested commands with “cannot find such devices”,
which will block the further testing of commands’ behavior in the
skill. We designed and implemented the virtual device to bypass the
device installation requirement. The virtual device is implemented
in the device discovery section in a skill’s backend code, similar to
the Listing 1. We also use a database to update the device’s status
according to received commands during the testing. Our virtual
device management skills can enable potentially related devices
with proper device names based on tested skills.
Log Information Extraction We analyze the logs of skills to
extract their behavior in the backend code. We use the CloudWatch
Logs [10] on the Amazon platform, which includes all logs from the
skills and devices of Amazon/Alexa account owners. In the logs, we
can extract information such as skill name, devices name, function
name used in the backend code, and the final command triggered.
As shown in the Listing 2, we can see the time stamp, namespace,
value, and commands used in this event. We first check if these
keywords are declared in the logs’ keywords. IoTSkillAnalyzer
searches for keywords and maps them to certain devices, such as
“endpoinID” for the device name, “namespace” for used Alexa API,
and “value” for device actions.

If no such keywords are found, IoTSkillAnalyzer consider this
log irrelevant to the tested utterance or at least does not contain
necessary information. Based on log extraction, we can get activities
of smart home skills and devices, e.g., commands sent from skills
and responses from devices. We also implement virtual devices
and real smart home devices on the platform so that we can see
the result of conducted voice commands by checking the dynamic
status of devices. The virtual devices and their logs can also be used
for identifying the request source of skill/API of commands. We use
a web crawler to download recent log files each time a command is
tested. We compare time stamps with previous logs to find logs that
are related to the current tested command. Then IoTSkillAnalyzer
identifies certain keyword attributes, e.g., namespace, name, value,
and endpointId.

1 2021-06-21T03:32:36.271Z

2 c35a1b4c-605f-4299-a22a-1d0bf4e411

3 {"event":{"header":

4 "endpointId":"sample -switch -01"},"payload":{}},

5 "context":{"properties":

6 [{"namespace":"Alexa.PowerController",

7 "name":"powerState","value":"OFF",

8 "timeOfSample":"2021 -06 -21 T03 :32:35.971Z",

9 "uncertaintyInMilliseconds":0}]}}

Listing 2: An example log of Switch.Off

Baseline Generation. We further check whether the utterance,
including the utterance as input and skills’ response, is consistent
with its literal meaning or its description. However, this is challeng-
ing due to the diverse ways to describe the functionalities given
by the utterance. We believe that intents/utterances with similar
functionalities should behave similarly [21], so we use trustworthy
skills (e.g., official utterances and manually verified 3rd-party skills
like SmartThings) as the baseline and compare other 3rd-party skills
with baseline. For example, two skills A and B both provide light
control functions. It is normal that both of them provide light bulb
commands. However, if a skill wants to open the garage door, it
will be suspicious.

We build a mapping dataset between utterances and expected
logs from trustworthy utterances and APIs. For example, “Turn on”
is matched with “Alexa.Power control” and value “on”. Then we
use uses this as a baseline to examine existing/new utterances from
3rd-party skills. After we build the baseline, we manually verify
the baseline to filter out some cases.

8 EVALUATION

In this section, we try to identify proposed hijacking skills on the
market. We first give a detailed analysis of potential hijacking smart
home skills that are similar to proposed three kinds of attack. Then,
we also test the behavior of skills backend code for these skills.

8.1 Command Hijacking Results

There are two kinds of skills’ command in the smart home category,
3rd-party skills using built-in intents, and 3rd-party skills with
customized intents. Since built-in intents cannot hijack itself, we
focus on 3rd-party skills that have customized intents. For 3rd-part
skills, we first need to bypass their account linking process to enable
them. Our tool succeeded in enabling and testing 488 3rd-party
skills and then tried to identify whether skills that have customized
commands can hijack built-in commands. Then IoTSkillAnalyzer
inputs standard built-in commands for each skill and collects the
voice responses and logs. IoTSkillAnalyzer identifies whether the
voice response from skills is the same as the built-in commands’
response and also checks the API and devices’ actions in logs.

8.1.1 Command-Invocation confounding attack. For the first type
of attack, after checking the skill invocation names of all skills on
the US market, we found 11 skills having an invocation name that
ends with a device name, such as “Carlock”, “garage door” and “my
door”. Four skills are in the “Smart Home” category and others
are in the “News”, “Kids”, “Games & Trivia”, etc. Figure 5 shows a
real-world skill we found on the skills store and its possible attack.
When users try to control their device with “Alexa, open my door”,
this skill will be invoked instead of built-in command. Before we
enabled this skill, when we invoked the command “Alexa open
my door”, Alexa responded with “Sorry, I didn’t find a group or
device named door”. However, after we enabled the “open door”
skill and invoked the same command, this skill was triggered first
and replied with “Opening door one,” which overrides the built-in
command’s response.

Figure 5: Real-world skill with Command-Invocation Attack.

Command Hijacking on Voice-Controlled IoT in Amazon Alexa Platform ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

8.1.2 Custom command attack. There are three kinds of hijacking,
two kinds of built-in intent hijacking, keeping dialogue hijacking,
and the scenario. We identify 6 skills in another category, such as
Smart Way. These skills give a full set of self-defined smart home-
related commands and do not use the built-in API at all. However,
they did hijack commands that were supposed to be sent to other
skills using the built-in API but did not do any malicious behavior
in the backend code.

8.1.3 Command-intent attack. For command intent hijacking, our
tool identifies 10 skills that hijack built-in API utterances using
customized API, such as skill ButterflyMX, Home Miner, Rachio,
Home Butler, Voltaware, Grid, IoT Connect, and so on. We list
more details on the demonstration page. These skills belong to the
smart home category but they have self-defined commands that
can be triggered before built-in APIs. We identify them as hijacking
because the response and log of the triggered API are different
from the built-in command, which means they can override built-in
commands and trigger their own API. However, because we don’t
have their required devices, we cannot examine the behavior in
their backend code.

Besides the proposed hijacking attack, we also identify 8 skills
that use long dialogues to hijack given commands from dialogue,
e.g., skill My Thing and household. These skills keep asking ques-
tions and give hints for users to give commands that are similar to
built-in commands. If the user replies “Turn on the bedroom light”,
these skills just execute the command and skip the built-in API.

In addition, we also identify 17 skills that redefined the home
scene, such as Arnoo Security, and Immax Neo Security. The home
scene is a special voice command, e.g., away mode and vocation
mode. Thesemodes are shortcuts for the action of a group of devices,
which are usually defined by Alexa. These skills define their own
away mode or vocation mode that can replace the original built-in
mode. We summarize findings in Table 8, and also list them on the
demonstration page.

Skill Name Problematic Utterances

Built-in Intent

SPA Turn up the temperature
Voltaware Turn on my light
Mirror Turn off lights

ButterflyMX Turn up volume
Keep Home miner Stop all devices

Dialogues Rachio Set channel to 10
Scenario My Thing Set home to away mode

Table 8: Existing hijacking/redefined skills examples.

8.2 Back-end Code Manipulation

Based on the discussion in Section 5.2, the attacker could modify
the backend code behavior for hijacked or customized smart home
skills. For the unsolicited behaviors in the backend code, we exam-
ined the inconsistency between voice commands and behaviors in
the backend code logs. We analyze the skills with pre-built baselines
of expected behaviors for each command and the generated baseline
is built based on the method mentioned in Section 7. We examine
our baseline generation results with manually examined built-in
utterances and 3rd party utterances. We compared the generated

expected baseline and real logs results for 137 built-in utterances
and selected 50 3rd-party utterances to confirm our baseline accu-
racy. We confirm that logs from the baseline can match the logs
from benign skills.

We still focus on the 488 3rd-party skills on the market that
use customized commands. We find that 26 skills have abnormal
backend behaviors compared to the expected behavior of voice
utterances. Unsolicited behavior consists of two main wrong types,
triggering wrong actions or hiding extra actions. For example, IoT-
SkillAnalyzer identifies 2 skills that have extra actions for locks
or garage doors. For a skill named garage opener, we found the
developer hijacked the “close the garage door” in his/her skill and
let the Alexa trigger this command instead of the benign official
commands. This skill implements extra actions of unlocking the
door and turning off all switches after closing the door. It was iden-
tified during dynamic testing and we found its weird response for
asking the lock pin for the closing garage door action.

Besides, a skill named “home mode management” has a hidden
“unlock the door” action while executing the benign command “turn
off all devices”. In this case, after the user leaves home, triggers the
awaymode, and turns off all devices, the skill can unlock the specific
smart lock. Another skill named “Miner Control” is supposed to tell
users about how to use pests (e.g., mice) control devices according
to the description. However, if a user asks for some utterance that
cannot be understood by the skill, it will ask the user for the address
and other information. We examine logs of all tested skills and
identify 11 skills that have more actions than claimed in backend
codes and 15 skills’ actions are different from claimed or improperly
implemented, like no action code at all. Figure 6 summarizes skills
with unsolicited behaviors by the device types.

Water AC Switch Light Lock
Device Types

0

2

4

6

8

Nu
m

be
r o

f P
ro

bl
em

at
ic

Ut
te

ra
nc

es

3

4

9

8

2

Figure 6: Unsolicited behaviors summary.

9 DISCUSSION

Limitations The limitations of our research are mainly centered
around three key areas. Firstly, the lack of visibility into the Alexa
ranking process. As the ranking process is a black box, the imple-
mentation details can only be determined through manual testing
of a few changeable parameters. This means that our findings may
have uncertainties in terms of the success rate of the overriding at-
tack. The manual nature of our testing process also limits the scope
of our research, making it difficult to fully explore or demystify the
system. Secondly, the success rate of conducting a real attack. To

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Wenbo Ding, Song Liao, Long Cheng, Xianghang Mi, Ziming Zhao, and Hongxin Hu

pass the Alexa vetting process, a malicious skill must be disguised
as a benign skill. However, the vetting process involves human
verification, making it uncertain whether the skill will be published.
Based on our testing, we were successful in publishing 19 out of 24
skills, disguised as Q&A, shopping, and weather. Lastly, there is a
lack of research into other VPA appications, such as Google Actions.
While we did identify similar issues with Google Actions, we have
limited information about the implementation details of its action
selection process. We did notice similar command overriding issues
for different types of actions and published some testing actions.
Countermeasures. To address these override issues, Alexa may
require a more fine-grained skill ranking system. However, it is
important to consider the trade-off between usability and security
in implementing such a solution. Our detection system already
identifies skills with suspicious API calls compared to the baseline.
To mitigate these vulnerabilities, the VPA platforms must proac-
tively identify and address these problems, which may damage the
usability of 3rd-party vendor platforms. The platform could imple-
ment code analysis to ensure that skills do not define commands
that already belong to other existing skills or built-in APIs.

10 RELATEDWORK

Current work in voice assistants mainly focuses on the following
areas: attacks on voice recognition, attacks on skills, skill vetting
processes, and policy violations.
Invocation Squatting Attacks. Prior work has demonstrated the
existence of frequently occurring and predictable errors in Amazon
Alexa’s speech recognition engine. These errors can be leveraged
to develop malicious skills (with identical or similar invocation
phrases) that can hijack the voice command meant for a legitimate
skill. Kumar et al. [24] introduced skill squatting attacks, where a
malicious developer registers a phonetically similar sounding skill
as the target. Zhang et al. [37] perform a similar analysis for Google
Home, and introduce an additional attack where a fake skill mas-
querades as a true one. LipFuzzer [38] analyzed misinterpretation-
prone voice commands in existing VPA platforms and found that
26,790 skills are potentially vulnerable to voice squatting attacks.
The fundamental cause is the mismatch between a user’s intention
and the voice assistant’s behavior.
Skill Security and Privacy. There has been an increasing number
of studies about voice app security and privacy. Cheng et al. [11]
and Wang et al. [33] measured the trustworthiness of the skill cer-
tification process of voice assistant platforms. [11, 26] found that
developers can update their code after skills are certified. Espos-
ito [19] presented the Alexa versus Alexa attack that can extend
voice masquerading attack to a prolonged amount of time. Lentzsch
et al. [26] analyze over 90,000 skills to find out that the Skill Squat-
ting Attack is not being used systematically in the wild, and observe
that multiple skills can have the same invocation name, hence, the
user could activate a wrong skill.
Skill Testing. For detecting the potential issues in skills, developers
proposed different methods for analyzing skills. Hossain et al. [31]
designed an automated tool to analyze sensitive voice commands.
Jide et al. [16] analyzed what data skills asked and whether their
privacy policies are consistent with data collection. After that, sev-
eral dynamic testing tools are proposed, such as SkillExplorer [21]

and SkillDetective [36] for all skills, VerHealth [32] for skills in
the Health category and SkillBot [25] for kids skills. In addition,
developers also analyzed the privacy issues in skills. Jide et al. [17]
measured the privacy practices across three years. [22, 26–29] an-
alyzed whether the privacy policies of skills are complete. Other
works [18, 35] summarized security attacks and privacy issues with
voice assistant.
Distinction from Existing Tools. Our testing tool is designed to
focus specifically on identifying new vulnerabilities related to the
Alexa smart home system, which sets it apart from other studies.
For the testing tool, we compare our testing tool with recent studies
from multiple perspectives in Table 9. SkillDetective [36] provides
a method to extract normal dialogue from skills. It could identify
the policy violation from the dialogue result. SkillExplorer [21]
provided a comprehensive overview of how to examine different
kinds of questions. These studies provide measurements for risky
behavior detection from real users’ perspectives. However, they
do not consider physical interactions among devices and do not
provide a runtime policy enforcement mechanism.

Real/Virtual

Devices

Utterance

Analysis

Logs

Analysis

Policy

Violation

IoTSkillAnalyzer ✓ ✓ ✓

SkillDetective [36] ✓ ✓

SkillExplorer [21] ✓

Dangerous Skill [11] ✓

SkillBot [25] ✓ ✓

Table 9: Comparison of our testing tool with other Alexa skill

analysis tools.

11 CONCLUSION

In this paper, our research goal is to identify potential vulnerabil-
ities in Alexa IoT skills. We have found three new attacks in the
intent-matching process, which can hijack Alexa’s built-in voice
commands to trigger malicious IoT skills. We have also designed
and implemented IoTSkillAnalyzer, the first dynamic testing tool
to examine IoT skills in the Alexa skill store. With IoTSkillAnalyzer,
we were able to test 488 Alexa 3rd-party IoT skills and identified 78
skills with potential hijacking or problematic backend code.

ACKNOWLEDGMENT

Thework of H. Hu is supported by NSF under the Grant No. 2226339,
2129164, and 2228617. The work of Z. Zhao is supported by NSF
under the Grant No. 2237238 and 2329704. The work of L. Cheng is
supported by National Science Foundation (NSF) under the Grant
No. 2239605, 2228616, 2114920, and partially based upon the work
supported by the National Center for Transportation Cybersecurity
and Resiliency (TraCR) (a U.S. Department of Transportation Na-
tional University Transportation Center) headquartered at Clemson
University, Clemson, South Carolina, USA. Any opinions, findings,
conclusions, and recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
TraCR, and the U.S. Government assumes no liability for the con-
tents or use thereof.

Command Hijacking on Voice-Controlled IoT in Amazon Alexa Platform ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

REFERENCES

[1] Virtual assistant technology - statistics facts. https://www.statista.com/topics/
5572/virtual-assistants/.

[2] Alexa. About alexa-hosted skills. https://developer.amazon.com/en-US/docs/
alexa/custom-skills/host-a-custom-skill-as-an-aws-lambda\-function.html.

[3] Alexa. Create the interaction model for your skill. https://developer.amazon.
com/en-US/docs/alexa/custom-skills/create-the-interaction-model-for-your-
skill.html.

[4] Alexa. Host a custom skill as an aws lambda function. https:
//developer.amazon.com/en-US/docs/alexa/hosted-skills/build-a-skill-end-to-
end-using-an-alexa\-hosted-skill.html.

[5] Alexa. Implement canfulfillintentrequest for name-free interactions.
https://developer.amazon.com/en-US/docs/alexa/custom-skills/implement-
canfulfillintentrequest-for-name\-free-interaction.html.

[6] Alexa. Is an alexa smart home device endpoint-id case sensitive?
https://amazon.developer.forums.answerhub.com/questions/241690/is-
an-alexa-smart-home-device-endpoint-id\protect\discretionary{\char\
hyphenchar\font}{}{}case-sen.html.

[7] Amazon. Alexa smart home. https://www.amazon.com/alexa-smart-home/b?ie=
UTF8&node=21442899011/.

[8] Amazon. Create intents, utterances, and slots. https://developer.amazon.com/en-
US/docs/alexa/custom-skills/create-intents-utterances-and-slots.html/.

[9] Amazon. Understand the smart home skill api. https://developer.amazon.com/en-
US/docs/alexa/smarthome/understand-the-smart-home-skill-api.html/.

[10] Amazon. What is amazon cloudwatch logs? https://docs.aws.amazon.com/
AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html/.

[11] Long Cheng, Christin Wilson, Song Liao, Jeffrey Young, Daniel Dong, and
Hongxin Hu. Dangerous skills got certified: Measuring the trustworthiness
of skill certification in voice personal assistant platforms. In ACM SIGSAC Con-
ference on Computer and Communications Security (CCS), 2020.

[12] Compustar. Cs4900-s remote start. https://www.compustar.com/bundles/cs4900-
s/.

[13] Wenbo Ding, Hongxin Hu, and Long Cheng. Iotsafe: Enforcing safety and security
policy withreal iot physical interaction discovery. In Network and Distributed
System Security Symposium, 2021.

[14] Wenbo Ding, Song Liao, Keyan Guo, Fuqiang Zhang, Long Cheng, Ziming Zhao,
and Hongxin Hu. Exploring vulnerabilities in voice command skills for connected
vehicles. In International Conference on Security and Privacy in Cyber-Physical
Systems and Smart Vehicles, pages 3–14. Springer, 2023.

[15] DroneMobile. Dronemobile. https://www.amazon.com/Firstech-LLC-
DroneMobile/dp/B071Z28K7T/.

[16] Jide Edu, Xavi Ferrer Aran, Jose Such, and Guillermo Suarez-Tangil. Skillvet:
Automated traceability analysis of amazon alexa skills. IEEE Transactions on
Dependable and Secure Computing, 2021.

[17] Jide Edu, Xavier Ferrer-Aran, Jose Such, and Guillermo Suarez-Tangil. Measuring
alexa skill privacy practices across three years. In Proceedings of the ACM Web
Conference (WWW), page 670–680, 2022.

[18] Jide S. Edu, Jose M. Such, and Guillermo Suarez-Tangil. Smart home personal
assistants: A security and privacy review. ACM Computing Surveys, 53(6), 2020.

[19] Sergio Esposito, Daniele Sgandurra, and Giampaolo Bella. Alexa versus alexa:
Controlling smart speakers by self-issuing voice commands. arXiv preprint
arXiv:2202.08619, 2022.

[20] Google. Hey google available on speakers. https://assistant.google.com/
platforms/speakers/.

[21] Zhixiu Guo, Zijin Lin, Pan Li, and Kai Chen. SkillExplorer: Understanding the
behavior of skills in large scale. In 29th USENIX Security Symposium (USENIX
Security 20), pages 2649–2666, 2020.

[22] Umar Iqbal, Pouneh Nikkhah Bahrami, Rahmadi Trimananda, Hao Cui, Alexander
Gamero-Garrido, Daniel Dubois, David Choffnes, AthinaMarkopoulou, Franziska

Roesner, and Zubair Shafiq. Your echos are heard: Tracking, profiling, and ad
targeting in the amazon smart speaker ecosystem. arXiv preprint arXiv:2204.10920,
2022.

[23] Young-Bum Kim, Dongchan Kim, Anjishnu Kumar, and Ruhi Sarikaya. Efficient
large-scale neural domain classification with personalized attention. In Proceed-
ings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2214–2224, 2018.

[24] Deepak Kumar, Riccardo Paccagnella, Paul Murley, Eric Hennenfent, Joshua
Mason, Adam Bates, and Michael Bailey. Skill Squatting Attacks on Amazon
Alexa. In 27th USENIX Security Symposium (USENIX Security), pages 33–47, 2018.

[25] Tu Le, Danny Yuxing Huang, Noah Apthorpe, and Yuan Tian. Skillbot: Identifying
risky content for children in alexa skills. ACM Transactions on Internet Technology
(TOIT), 22(3):1–31, 2022.

[26] Christopher Lentzsch, Sheel Jayesh Shah, Benjamin Andow, Martin Degeling,
Anupam Das, and William Enck. Hey Alexa, is this skill safe?: Taking a closer
look at the Alexa skill ecosystem. In Proceedings of the 28th ISOC Annual Network
and Distributed Systems Symposium (NDSS), 2021.

[27] Mingqi Li, Fei Ding, Dan Zhang, Long Cheng, Hongxin Hu, and Feng Luo. Multi-
level distillation of semantic knowledge for pre-training multilingual language
model. arXiv preprint arXiv:2211.01200, 2022.

[28] Song Liao, Long Cheng, Haipeng Cai, Linke Guo, and Hongxin Hu. Skillscanner:
Detecting policy-violating voice applications through static analysis at the devel-
opment phase. In Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, pages 2321–2335, 2023.

[29] Song Liao, Christin Wilson, Long Cheng, Hongxin Hu, and Huixing Deng. Mea-
suring the effectiveness of privacy policies for voice assistant applications. In
Annual Computer Security Applications Conference (ACSAC), page 856–869, 2020.

[30] Sean Murray. Using amazon echo to turn on a device after a de-
lay? https://community.smartthings.com/t/using-amazon-echo-to-turn-on-a-
device\-after-a-delay/68343/.

[31] Faysal Shezan, Hang Hu, JiaminWang, GangWang, and Yuan Tian. Read between
the lines: An empirical measurement of sensitive applications of voice personal
assistant systems. In Proceedings of The Web Conference (WWW), 2020.

[32] Faysal Hossain Shezan, Hang Hu, Gang Wang, and Yuan Tian. Verhealth: Vetting
medical voice applications through policy enforcement. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol., 2020.

[33] Dawei Wang, Kai Chen, and Wei Wang. Demystifying the vetting process of
voice-controlled skills on markets. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 5(3):1–28, 2021.

[34] Wei Xiao, Qian Hu, Thahir Mohamed, Zheng Gao, Xibin Gao, Radhika Arava,
and Mohamed AbdelHady. Two-stage voice application recommender system
for unhandled utterances in intelligent personal assistant. Frontiers in Big Data,
5:898050, 2022.

[35] Chen Yan, Xiaoyu Ji, Kai Wang, Qinhong Jiang, Zizhi Jin, and Wenyuan Xu. A
survey on voice assistant security: Attacks and countermeasures. ACMComputing
Surveys, 2022.

[36] Jeffrey Young, Song Liao, Long Cheng, Hongxin Hu, and Huixing Deng. SkillDe-
tective: Automated Policy-Violation detection of voice assistant applications in
the wild. In 31st USENIX Security Symposium (USENIX Security 22), Boston, MA,
August 2022. USENIX Association.

[37] Nan Zhang, Xianghang Mi, Xuan Feng, XiaoFeng Wang, Yuan Tian, and Feng
Qian. Dangerous skills: Understanding and mitigating security risks of voice-
controlled third-party functions on virtual personal assistant systems. In 2019
IEEE Symposium on Security and Privacy (SP), pages 1381–1396. IEEE, 2019.

[38] Yangyong Zhang, Lei Xu, Abner Mendoza, Guangliang Yang, Phakpoom Chin-
prutthiwong, and Guofei Gu. Life after speech recognition: Fuzzing semantic
misinterpretation for voice assistant applications. In Network and Distributed
System Security Symposium (NDSS), 2019.

https://www.statista.com/topics/5572/virtual-assistants/
https://www.statista.com/topics/5572/virtual-assistants/
https://developer.amazon.com/en-US/docs/alexa/custom-skills/host-a-custom-skill-as-an-aws-lambda\-function.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/host-a-custom-skill-as-an-aws-lambda\-function.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/create-the-interaction-model-for-your-skill.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/create-the-interaction-model-for-your-skill.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/create-the-interaction-model-for-your-skill.html
 https://developer.amazon.com/en-US/docs/alexa/hosted-skills/build-a-skill-end-to-end-using-an-alexa\-hosted-skill.html
 https://developer.amazon.com/en-US/docs/alexa/hosted-skills/build-a-skill-end-to-end-using-an-alexa\-hosted-skill.html
 https://developer.amazon.com/en-US/docs/alexa/hosted-skills/build-a-skill-end-to-end-using-an-alexa\-hosted-skill.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/implement-canfulfillintentrequest-for-name\-free-interaction.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/implement-canfulfillintentrequest-for-name\-free-interaction.html
https://amazon.developer.forums.answerhub.com/questions/241690/is-an-alexa-smart-home-device-endpoint-id\protect \discretionary {\char \hyphenchar \font }{}{}case-sen.html
https://amazon.developer.forums.answerhub.com/questions/241690/is-an-alexa-smart-home-device-endpoint-id\protect \discretionary {\char \hyphenchar \font }{}{}case-sen.html
https://amazon.developer.forums.answerhub.com/questions/241690/is-an-alexa-smart-home-device-endpoint-id\protect \discretionary {\char \hyphenchar \font }{}{}case-sen.html
https://www.amazon.com/alexa-smart-home/b?ie=UTF8&node=21442899011/
https://www.amazon.com/alexa-smart-home/b?ie=UTF8&node=21442899011/
https://developer.amazon.com/en-US/docs/alexa/custom-skills/create-intents-utterances-and-slots.html/
https://developer.amazon.com/en-US/docs/alexa/custom-skills/create-intents-utterances-and-slots.html/
https://developer.amazon.com/en-US/docs/alexa/smarthome/understand-the-smart-home-skill-api.html/
https://developer.amazon.com/en-US/docs/alexa/smarthome/understand-the-smart-home-skill-api.html/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html/
https://www.compustar.com/bundles/cs4900-s/
https://www.compustar.com/bundles/cs4900-s/
 https://www.amazon.com/Firstech-LLC-DroneMobile/dp/B071Z28K7T/
 https://www.amazon.com/Firstech-LLC-DroneMobile/dp/B071Z28K7T/
https://assistant.google.com/platforms/speakers/
https://assistant.google.com/platforms/speakers/
 https://community.smartthings.com/t/using-amazon-echo-to-turn-on-a-device\-after-a-delay/68343/
 https://community.smartthings.com/t/using-amazon-echo-to-turn-on-a-device\-after-a-delay/68343/

	Abstract
	1 Introduction
	2 Background
	2.1 Alexa Skill Invocation
	2.2 Skill Development
	2.3 Smart Home Skills

	3 Threat Model
	4 Command Hijacking Attacks
	4.1 Pre-settings for attacks
	4.2 Invocation Confounding Attack
	4.3 Custom Command Attack
	4.4 Command-Intent Hijacking Attack

	5 Post-ExPloitation with Intent Hijacking
	5.1 DoS Attack
	5.2 Back-end Code Manipulation

	6 Measurement of related Attack Parameters
	6.1 Impact of Skill Category on Skill Ranking
	6.2 Impact of Skill Context on Skill Ranking
	6.3 Attacking Connected Vehicle Skills

	7 Understanding Potential Risks in Existing Skills
	8 Evaluation
	8.1 Command Hijacking Results
	8.2 Back-end Code Manipulation

	9 Discussion
	10 Related Work
	11 Conclusion
	References

