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Abstract—In the age of pervasive computing, traditionally
centralized cloud storage (CCS) services may not fit in well due
to their centralized architecture, limited worldwide availability,
high expense, and security and privacy concerns. To address
these issues, decentralized cloud storage (DCS) services emerged
recently. However, previous works focus on analyzing the techni-
cal design of DCS services, e.g., their incentive mechanisms. Little
is known regarding how well these DCS services work in real-
world operations. In this paper, we fill this gap by providing the
first empirical measurement of Storj, one of the most extensive
in-operation decentralized cloud storage services, focusing on its
ecosystem, performance, and security implications.

Our study is made possible through multiple measurement
techniques to automatically capture storage nodes, profile Storj’s
quality of service, understand co-located network threats, and
evaluate potential attacks in a simulated environment. Leveraging
these techniques, a set of insightful findings have been distilled.
Particularly, we have observed over 32K storage nodes as well as
155K unique node IP addresses, which are widely distributed in
122 countries, 2,418 ASNs, and 205 /8 IPv4 prefixes. Regarding
performance, storage customers located in Europe or the United
States tend to enjoy a better storage performance than those
in Asia-Pacific, likely due to the imbalanced distribution of
storage nodes in different regions. Lastly, what is concerning is
that 4.48% of IPs of storage nodes were found to have been
associated with various malicious activities, especially botnets
and cryptomining. Another vulnerability is that a malicious
storage node could exploit multiple channels to boost its storage
reputation while demoting that of benign nodes.

Index Terms—Decentralized cloud storage, Storj, measure-
ment, performance, security

I. INTRODUCTION

Cloud storage has been increasingly adopted during the
last decade by both individuals and businesses, e.g., tradi-
tional cloud storage services such as Google Cloud Storage
(GCS) [1], and Amazon Simple Storage Service (AWS S3) [2].
These centralized cloud storage (CCS) services are widely
used in many scenarios, such as file hosting, data backup for
devices, and storing sensitive business data. However, CCS
services suffer from a common set of notable limitations
including the outage issue [3], security and privacy concerns
(e.g., censorship on the stored data), data silos, etc [4].

In recent years, decentralized cloud storage (DCS) services
(such as Storj [5], Sia [6], and IPFS Filecoin [7]) emerge to
address these limitations. Across DCS networks, storage nodes

∗Corresponding authors.

are responsible for data storage and retrieval. Different from
CCS services wherein all storage nodes are operated by the
service provider, storage nodes in DCS networks are operated
by different parties and tend to a global distribution. Given the
rise of DCS services, several works [4], [8]–[10] have been
conducted in the last few years, jointly providing a theoretical
overview of DCS services. However, little is known regarding
how well DCS services work in the real world, in terms of
ecosystem, performance, and security. To fill in this gap, we
carry out this empirical and extensive measurement study on
Storj, one of the most representative DCS services. Among
DCS services, Storj has the largest number of storage nodes
as well as one of the largest usage volumes (as depicted in
§II). Also, it is the only DCS service that supports storage
access through S3 APIs [11], which allows us to carry out a
direct comparison between Storj and CCS services.

In our study, we aim to answer the following research
questions. First of all, we want to profile storage nodes, the
most critical component that distinguishes a DCS service from
its centralized counterpart. We will gain a better understanding
of how Storj’s storage nodes are distributed around the world
and how they change and develop over time. Then, we want
to empirically investigate the quality of service (QoS) that the
Storj network can achieve, whether its QoS is comparable with
that of CCS services (e.g., AWS S3). Similarly, since the fact
that security and privacy are major distinguishing features of
Storj, it is worthwhile to profile the security implications of
Storj in a way that is not only qualitative but also quantitative.

Answering these research questions is non-trivial and sev-
eral technical challenges should be addressed. First of all, no
metadata datasets are available for us to learn details of daily
active storage nodes. We thus design and build up a storage
node collector which can automatically interact with Storj’s
satellite (one of the primary components of the Storj network)
and query about the latest list of all active available storage
nodes. Besides, to extensively profile the QoS performance
of the Storj, many factors should be considered, e.g., client-
side bandwidth, the locations of both the clients and the
Storj satellites, various file operations (upload/download), and
different file sizes. We thus build up a performance evaluation
framework that can automatically carry out and collect logs
for control experiments following given configurations. Fur-
thermore, to investigate the fundamental security risks that are
inherent in Storj’s design, we also build upon the Storj testbed979-8-3503-9973-8/23/$31.00 ©2023 IEEE
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so as to simulate the Storj network in a realistic manner and
evaluate the feasibility of a series of vulnerability scenarios.

Leveraging the methodologies mentioned above, we carry
out in this study, an empirical characterization of the Storj
network for the first time, along with a set of novel and
insightful findings distilled. First of all, during our 16-month
measurement between April 2021 and August 2022, we ob-
served 32,881 unique Storj storage nodes which are hosted on
155,457 unique IP addresses residing in 122 countries, 2,418
ASNs, and 205 /8 IPv4 prefixes. And also, we have looked
into the lifetime and churn rates of storage nodes with a 9.6%
month-by-month churn rate on average.

Besides, we have profiled the quality of service of the
Storj network. It turns out that customers located in Europe
or the United States can enjoy a better storage performance
compared to ones in Asia-Pacific, which is likely due to the
imbalanced distribution of storage nodes in different regions.
When compared with traditional centralized cloud storage
systems (GCS [1] and AWS S3 [2]), Storj was comparable
in quality of service measured by latency and throughput of
download in Europe but still fell behind in the operation
of upload. However, in terms of pricing, Storj has great
advantages over the two centralized cloud storage services.

Lastly, we investigated the security implications of the Storj
network with a focus on its storage nodes since these nodes
are operated by untrusted third parties. Among all the IPs of
storage nodes, 4.48% were associated with various malicious
activities, e.g., botnets and suspicious cryptomining. This can
compromise the reputation and availability of the involved
storage nodes, leading to the blocking of storage traffic, and
ultimately undermining the reliability of the Storj network. We
have also identified multiple channels for a dishonest or even
malicious storage node to manipulate its storage reputation,
in an attempt to impede Storj’s reputation system which can
increase its chance of getting selected to serve more data
storage orders. We refer to such scenarios as the reputation
manipulation vulnerabilities, for which we have demonstrated
their feasibility in a simulated testbed.

Our main contributions can be summarized as follows.
•New techniques. We have first designed and implemented
several new techniques to empirically profile the Storj network
from various aspects. In particular, a storage node collector is
built up for automatically capturing active storage nodes. Then,
we presented an evaluation framework for comprehensively
measuring the performance as well as comparing Storj with
CCS services. Lastly, we have explored a reputation manip-
ulation vulnerability to investigate the fundamental protocol
security risk that is inherent in Storj’s design.
•New findings. We are the first to study Storj DCS and a
set of insightful findings have been distilled in our study
regarding landscape and evolution, performance, and security
implications.

II. BACKGROUND OF STORJ

Before stepping into our measurement methodology and
respective results, we start by presenting necessary background

TABLE I
AN OVERVIEW OF DIFFERENT DCS NETWORKS.

System
Storage

Capacity1
Active Storage

Nodes Durability2 S3

Storj [5] 18.8PiB 16K Erasure Codes ✓
IPFS Filecoin [7] 18EiB 4K Replication ✗

Sia [6] 7.43PiB 0.5K Erasure Codes ✗

1 Storage Capacity: Storage network stored data scales queried in March 2022.
2 Durability: Methods to make stored files persist.

knowledge, especially the fundamental concepts of various
decentralized cloud storage networks and their pros and cons,
as well as the unique characteristics of Storj.
Decentralized Cloud Storage. To address the aforemen-
tioned constraints of CCS services, decentralized cloud storage
services emerged in recent years. Typical services of DCS
networks include IPFS Filecoin [7], Sia [6], and Storj [5].

Across these DCS networks, storage nodes play a crucial
role in data storage and retrieval. Different from CCS services
wherein storage servers are operated and controlled by the
same owner (the service provider), storage nodes in DCS
networks source from different parties and have a global
distribution. Across storage networks, storage nodes will be
paid for storing data and serving data retrieval, and the
payment is calculated upon multiple factors including the size
of the data to be stored, the storage period, and bandwidth
incurred by data uploading and downloading, etc. To audit the
operations of storage nodes, various proof-of-work schemes
have been adopted, e.g., proof of replication, and proof of
retrievability [12]. Also, to execute and record storage or
retrieval transactions, Filecoin and Sia leverage smart contracts
while Storj utilizes centralized servers called Satellites.
Why Storj. In particular, Storj and Sia have built-in sup-
port for data redundancy leveraging various Erasure Coding
schemes [13]. Briefly, a file will be divided into many shards
before being uploaded to distinct storage nodes, and only
a subset of the resulting shards is necessary to recover the
original file. In addition, shards in Storj and Sia are encrypted
before uploading, and the encryption keys are only known
by the file owner. Different from Storj and Sia, by the time
of our paper writing, Filecoin has yet to support erasure
coding and client-side encryption. By default, a file is stored
by a single storage provider in Filecoin without client-side
encryption [14]. Furthermore, Storj also has the largest number
of storage nodes and the second-highest storage capacity. And
different from the other DCS services, Storj provides S3-
compatible gateways for clients to access their files through
S3 APIs, which makes it easier for users of centralized storage
services to migrate to Storj, as well as makes it possible to
compare Storj’s performance directly with CCS services (such
as AWS S3). Table I presents a comparison of these DCS
services, and we thus choose Storj as our research subject,
considering these factors.
The Technical Design of Storj. We provide a technical
overview of Storj as follows.
Participants. The Storj storage network consists of three key
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components. One is the Storage Clients, the client-side pro-
grams (e.g., Storj Uplink CLI1 and S3 CLI [11]) leveraged by
storage customers to access this storage network and carry out
storage operations such as uploading and downloading. Then
there are the Storage Nodes which are responsible for storing
data and earning payments. A storage node can be operated by
any third party, trustworthy or not. The third is Satellites which
are dedicated to many tasks including storage node discovery,
data audit and repair, and billing, among others. For instance,
the auditing system periodically verifies that storage nodes
actually store the data they agreed to store and evaluates the
node’s reputation score (which is very closely related to the
rewards). Currently, all satellites are operated in a centralized
manner by the official Storj administrator.
File Uploading and Downloading in Storj. When an Uplink
client uploads a file to the Storj network, the file will be first
split into segments of a predefined size (the current size is
64MB2) and each segment will be further encrypted locally
on the client side. Given the encrypted segment, the Reed-
Solomon Erasure Coding scheme [13] is applied to splitting
the segment into n = 80 pieces. Subsequently, in order to
distribute these pieces to different storage nodes and address
the issue of slow nodes in the upload list, a necessary number
of storage nodes (o = 110 until our paper writing) will be
extracted from the satellites. When downloading a file stored in
the Storj network, a reverse order of steps is needed. And only
k = 29 pieces are required to recover the respective segments
that were attempted to download from l = 39 (attempt to
download pieces) different storage nodes. Specifically, the
erasure coding variables are (k, l, n, o) = (29, 39, 80, 110).

III. THE STORJ STORAGE NETWORK ECOSYSTEM

In this section, we present an overview of the Storj storage
network. To start, we first present in §III-A, the storage nodes
collector which is designed and deployed to automatically
interact with satellites to collect active Storj storage nodes.
Leveraging this storage node collector, we carried out an
empirical measurement and a set of novel understandings have
been distilled on Storj’s landscape as introduced in §III-B.

A. The Storage Node Collector

Obtaining detailed and comprehensive metadata of storage
nodes is critical for profiling the entire Storj ecosystem. Such
kinds of metadata attributes for each storage node include
the node ID, the IP addresses, and the Ports it listens to.
However, no publicly available datasets contain such detailed
information. And how to acquire all of the storage nodes’
data without interfering with its normal operation is a very
challenging thing. To fulfill this gap, we designed and imple-
mented a storage node collector to capture currently active
storage nodes in real-time. As aforementioned in §II, when
uploading a file, the Uplink client will retrieve a set of active
storage nodes from the satellite, so as to store the erasure-
coded pieces in distinct storage nodes. We observe that the

1https://github.com/storj/uplink
2https://docs.storj.io/dcs/concepts/definitions

response returned by the satellite contains detailed metadata
attributes for each of the storage nodes with no encryption.
Also, separate requests for extracting storage nodes tend to
have a different set of storage nodes returned by the satellites,
which is reasonable since the satellites are designed to balance
storage workloads across storage nodes.

Leveraging these observations, we built up the storage node
collector by modifying the Storj Uplink CLI (v1.4.53) with the
necessary hooking and logging functionalities. The proposed
node collector can periodically act as uploading a file to query
the designated satellite server for a list of storage nodes. Then
it dumps the resulting storage nodes into a local file designated
through a command line parameter, before moving to the
next round of storage node collection. The collector won’t
interact with the storage nodes in data collection. We ran
our nodes collector instance during the measurement period
between April 30, 2021, and August 30, 2022. The collector
was configured to query the respective satellite at most once
per second, which is much lower than the official rate limit of
100 requests per second for a free-tier Uplink client [15]. Also,
to further reduce the request pressure of the satellites, our daily
collection job will be terminated if no new storage nodes are
discovered for 10 consecutive rounds. And we observed that
the storage node collector runs for no more than 18 hours per
day in most cases. Therefore, we believe the traffic pressure
on the satellites incurred by our collector should be negligible.
Data Summary. During the 16-month measurement, our
storage nodes collector captured 32,881 unique storage nodes
along with 155,457 IP addresses that had ever hosted storage
nodes. Although our collector was configured with a low
request frequency, it turns out to be enough to capture the
majority or even all of the daily active storage nodes. The
anonymized dataset is released at our Github4.

B. Landscape of Nodes

As introduced in §III-A, we deployed a collector
to proactively capture storage nodes of Storj on a
daily basis. From 04/30/2021 to 08/30/2022, we ob-
served an increase in storage node IDs by 183%.
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Fig. 1. The evolution of storage nodes and
node IPs across time.

Fig. 1 presents how
storage nodes as well
as node IPs evolve
across time in terms
of the volume dur-
ing our collection pe-
riod. We can ob-
serve a steady growth
of cumulative storage
nodes and their IP ad-
dresses. However, the
daily active storage
nodes and their IP addresses are relatively stable. Also, an
interesting observation is that the number of daily active

3https://github.com/storj/uplink/releases/tag/v1.4.5
4https://github.com/lihaoSDU/IWQoS2023
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storage nodes is constantly more than that of their respective IP
addresses, which is due to the fact that a single IP address may
host multiple storage nodes. One abnormal pattern revealed in
Fig. 1 is that the daily captured storage nodes and IP addresses
had abruptly dropped to an unexpectedly low volume for
several dates, e.g., 03/11/2022 to 03/14/2022. We looked into
the root cause from the Storj community and found out that
the abrupt downward trend likely resulted from The Russo-
Ukrainian War affecting the availability of storage nodes in
both countries5.
The Many-to-Many Relationship between Node IDs and
Node IPs. We also observe a many-to-many relation between
node IDs and node IPs. In other words, a storage node may
migrate across IP addresses or even network blocks while
a node IP may be used to host multiple storage nodes.
Specifically, during our node collection period, 9,670 out of
32,881 nodes have migrated across at least 2 IP addresses,
and 5,290 have migrated across 5 or more. On the contrary,
among 155,457 node IPs, 13,066 have hosted more than 2
nodes while 2,218 have hosted even 5 or more nodes.

Regarding one node attaching to many IPs, many nodes
were found to have attached to dynamic public IP addresses,
and node operators thus adopted various DDNS services to
automatically update the DNS records for their node domain
names with new IP addresses. For instance, storage node
“1zFzFD****ekcr” deployed Synology NAS DDNS service
(synology.me) and 73 IP addresses were observed to address
this node during our node collection period. In terms of one
IP to many nodes, most of these IPs were found to be IPs of
reverse port forwarding services (RPFS, e.g., Ngrok6), which
are designed to expose the network services to the public
without the necessity of listening to a public TCP/UDP port.
The adoption of reverse port forwarding services resulted in
the sharing of a small set of RPFS IPs across many storage
nodes. For instance, “3.*.*.225”, an IP of a Ngrok gateway
server, is used to host 21 distinct storage nodes. We will make
a further investigation on PFS security in §V.
Nodes Distribution. To measure the node distribution in the
geolocation space and the network space, we queried IP-
info [16] to extract the IP WHOIS information for the captured
storage nodes. IPinfo is an IP address data provider (420
billion requests a year) to produce geolocation, ASN, hosted
domains, IP range details, etc. From the IPinfo intelligence,
the 155K storage nodes IPs have been distributed in 74K /24,
11K /16, and 205 /8 IPv4 proxies which are located in 2,418
ASNs and 122 countries. Also, the distribution is not only
wide but also with most storage nodes residing densely in a
few countries/continents. The top 10 countries (demonstrated
in Table II) have notably contributed 56.1% of storage nodes
and 71.3% of node IPs. And over 98% of storage nodes along
with 96.4% of IPs are distributed in Europe, North America,
and Asia-Pacific continents. This phenomenon may lead to
inconsistent storage performance of users located in different

5https://www.storj.io/blog/our-approach-regarding-russian-network-
connectivity-uncertainty

6https://ngrok.com/

TABLE II
TOP 10 COUNTRIES ACCOUNTING FOR MOST STORAGE NODES.

Index Country # Nodes % Nodes # IPs % IPs

1 United States 4,439 13.5% 9,963 6.4%
2 Germany 3,584 10.9% 70,450 45.32%
3 France 2,564 7.8% 5,149 3.31%
4 Russia 2,104 6.4% 4,919 3.16%
5 Spain 1,512 4.6% 7,283 4.68%
6 Netherlands 986 3% 3,028 1.94%
7 Canada 953 2.9% 3,257 2.1%
8 United Kingdom 855 2.6% 2,409 1.55%
9 Romania 789 2.4% 2,331 1.5%
10 Ukraine 657 2% 2,129 1.37%

regions. For instance, users in Asia-Pacific have an inferior
strength compared to Europe or the United States, and we
will verify this assumption in §IV-A of QoS.
Churn Rates of Storage Nodes. We also measured the churn
rates of storage nodes, in an attempt to further understand the
stability of the Storj network. Among storage nodes initially
observed in April 2021, only 44% were still active by the last
month of our measurement, namely, August 2022. We also
calculated the month-by-month churn rates between May 2021
and August 2022. As listed in Table III, the churn rate ranges
from 4.55% to 15.28%, and the average churn rate is 9.6%.
Besides, to corroborate our findings, we further investigated
the Storj disqualified nodes, and as aforementioned, 32,881
unique storage nodes are observed in total while the daily
number of active storage nodes is stable at around 13K. One
root cause we have identified is that many storage nodes
may be considered by the satellite as disqualified after failing
many audits (e.g., offline, stored data loss). Once a storage
node is regarded as disqualified, it will be excluded from
serving data storage in which case our collector will not be
able to capture it anymore [17]. In particular, we crawled the
statistics of disqualified nodes released by Storj DCS Public
Network Statistics [18]. From [18], the number of disqualified
storage nodes increases from 22K in June 2021 to 37K in
August 2022, which aligns with our empirical observations.
And such non-negligible churn rates and disqualified nodes
highlight the Storj network still has a particular deficiency
that needs to progress, especially in how to retain the storage
node operators.

Finding 1: On the one hand, the Storj network has
a large number of storage nodes that are globally
distributed in 122 countries with steady growth, which
highlights its distributed characteristics and suggests
a high resilience. Still, there is a phenomenon that
most nodes are deployed in a few countries. On the
other hand, the number of daily active storage nodes
is relatively stable with a 9.6% churn rate month-by-
month during our 16-month measurement.

IV. QUALITY OF SERVICE

Upon a comprehensive understanding of the Storj ecosys-
tem, we then move forward to profile its quality of service. Our
performance evaluation is focused on answering the following
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TABLE III
MONTH CHURN RATE COMPARED TO THE LAST MONTH.

Month 2021-05 2021-06 2021-07 2021-08 2021-09

Churn Rate 14.48% (1817) 10.93% (1401) 10.33% (1303) 9.43% (1179) 7.56% (947)
Month 2021-10 2021-11 2021-12 2022-01 2022-02

Churn Rate 13.41% (1722) 15.28% (1860) 14.47% (1558) 4.55% (515) 8.45% (1130)
Month 2022-03 2022-04 2022-05 2022-06 2022-07

Churn Rate 7.67% (1068) 8.06% (1129) 7.54% (1084) 5.29% (778) 6.21% (950)

three questions: 1) What QoS can Storj offer? 2) How does
the QoS of Storj vary across regions and access options? 3)
How well is Storj’s QoS when compared to major centralized
cloud storage services?
Methodology and Implementation. Our performance eval-
uation framework consists of an evaluation controller, the
storage clients (Storj Uplink CLI and Storj S3 CLI), as well as
storage servers of three cloud storage services including Storj,
and 2 other representative centralized cloud storage services,
Amazon S3 [2], and Google Cloud Storage [1]. The Storj
Uplink CLI is a Python wrapper that we built upon the Storj
Uplink. And the S3 CLI was implemented based on Boto37,
the AWS S3 SDK for Python.

In our study, we considered various file sizes to upload
and download. As mentioned in §II, each segment has a
maximum size of 64MB, so we choose 64MB, and 128MB,
as well as other three small file size settings (1MB, 4MB,
and 16MB) which are commonly adopted in previous works
[19]. Besides, to mitigate biases potentially incurred by ge-
ographical locations, we deployed our clients in three rep-
resentative regions including Singapore in Asia-Pacific (AP-
SG), Germany in Europe (EU-DE), and the United States
in North America (NA-US). Also, storage servers located in
these regions were considered in our experiments. Further,
we throttled the network bandwidth of the storage clients
to various extents, aiming to evaluate how it affects the
end2end storage performance. This is favored by a bandwidth
throttling tool, WonderShaper [20]. For each unique setting,
5 duplicate experiments were carried out to achieve more
reliable performance statistics. Overall, we have carried out
over 49,000 file storage operations involving different combi-
nations of client locations, storage services, client bandwidths,
file operations, and file sizes. Also, two commonly recognized
QoS metrics [19], [21], latency (length of time in milliseconds
that it takes for data transmission) and throughput (MBs per
second), are adopted in our study to profile storage perfor-
mance. Table IV details our evaluation settings.

A. The QoS of the Storj Network

Default Setting. The default setting as listed in Table IV
consists of a Storj-Uplink client deployed in the EU-DE with
a 100Mbps bandwidth, as well as the Storj satellite also in
the EU. In the default setting, a file of 64MB is uploaded and
downloaded multiple times with predefined performance met-
rics measured. In short, Storj-Uplink has achieved an average
latency of 18.97 seconds as well as an average throughput

7https://github.com/boto/boto3

TABLE IV
CONFIGURATIONS OF OUR PERFORMANCE EVALUATION.

Name Options Default

File Operations Upload, Download N/A
File Size in MB 1, 4, 16, 64, 128 64
Server Locations1 AP, EU, US EU

Client Configuration Ubuntu 18.04, 1 CPU, 2 GiB Memory N/A
Client Locations AP-SG, EU-DE, NA-US EU-DE

Client Bandwidth in Mbps 10, 50, 100, 150, 200, 250, 300 100
1 A client can only select the intercontinental region to which the satellite belongs,
rather than more fine-grained, such as countries or individual nodes.

TABLE V
LATENCY (S) OF STORJ UPLINK IN DIFFERENT REGIONS.

Upload Download
Client/Satellite1,2 AP EU US AP EU US

AP-SG 20.82 21.23 24.80 9.97 12.87 15.11
EU-DE 22.39 18.97 23.01 8.56 7.6 8.47
NA-US 22.44 21.4 19.0 8.64 8.53 7.58

1 Client bandwidth: 100Mbps, upload/download file size: 64MB
2 The average standard deviation for upload and download is 1.7s and 0.9s,

respectively.

of 3.39 MB/s for the upload operation, whereas its download
performance is slightly better with 7.6s as the latency and 8.44
MB/s as the throughput.
Satellite Locations. Following Storj’s design, nodes and cus-
tomers are divided by regions, and the satellites are set up in
each region to coordinate storage activities in the respective
region. Intuitively, a client should connect to the satellite in
the same region so as to achieve the best storage performance.
Hence we evaluate the hypothesis through comparative exper-
iments. Specifically, in our experiments, when conducting the
default storage operations, clients are instructed to connect
to satellites not only in the same region but also in the
other 2 regions. Comparing the performance variations, we
are allowed to learn whether it is the best strategy for a client
to always connect to the same-region satellite.

Table V presents the experiment results and we can see
that a client in regions AP-SG, EU-DE, and NA-US can
achieve better performance when connecting to satellites in
its home region. This can be explained by the fact that the
satellite tends to choose storage nodes that are close to the
client to serve an upload operation. In addition, we also find
that a client in the EU-DE or NA-US can achieve a better
performance compared to an AP-SG client (both in file upload
and download operations). A good explanation is that most
storage nodes are located in either Europe or North America,
as above-mentioned in §III-B. In other words, the more storage
nodes the home region has, the better storage performance a
client may achieve.
Storj Uplink VS Storj S3 CLI. Storj offers two options for a
client to access its storage network. One is Storj Uplink, which
communicates directly with storage nodes with help from
satellites, the other is a general S3 client which communicates
only with a Storj S3 gateway server [11], which in turn handles
interactions with Storj nodes and satellites. It is interesting
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TABLE VI
THROUGHPUT (MB/S) COMPARISON BETWEEN STORJ UPLINK AND S3.

Configuration1 1MB 4MB 16MB 64MB 128MB

Uplink, Upload 0.51 1.71 2.99 3.39 3.49
S3, Upload 0.63 2.17 7.05 10.32 10.8

Uplink, Download 1.27 3.53 8.47 8.44 8.59
S3, Download 2.01 5.39 14.66 11.85 11.12

1 Clients in EU-DE, and client-side bandwidth is 100Mbps.

to explore which access option can provide better storage
performance. We thus conducted a set of experiments to
answer these questions. Based on the results presented in
Table VI, it is apparent that the Storj S3 gateway exhibits
superior performance in pre-defined scenarios. Also, regardless
of the client options, download operations have achieved
better throughput compared to respective uploads. To explain
the aforementioned performance observations that the Storj
S3 provides such a better performance, we carried out a
theoretical analysis in detail.
Theoretical Explanation. Given the performance comparison
results between Storj Uplink and Storj S3 (mentioned in
Table VI), we provide reasonable explanations regarding why
the S3 client can achieve better results compared to Uplink,
and also what makes downloading have a higher throughput
than uploading. We assume the client-side bandwidth is bc
Mbps whereas it is bs3 Mbps for the Storj S3 gateway server.
Also, the erasure code parameters are set up as (k, l, n, o) =
(29, 39, 80, 110) in the current Storj implementations, which
may change in the future. As introduced in §II, Storj Uplink
will divide an uploaded file into 64MB segments. Here we
denote the file size as x MB (less than 64MB), and the erasure
encodes each segment into n pieces with each of the size of
x/k before uploading these pieces to o storage nodes (if the
long-tail issue arises,). Let’s assume the storage nodes have
enormous bandwidth and a file upload/download operation is
mainly throttled by the client-side bandwidth. That being said,
the upload latency of Storj Uplink LU−U can be represented
as Equation 1a.

Different from using Storj Uplink, file upload through Storj
S3 gateways involves two steps, one is to upload the whole
file to the gateway server, then the gateway can serve as the
Storj Uplink and be used to upload the erasure-coded pieces to
individual Storj nodes. Therefore, as detailed in Equation 1b,
its upload latency LS3−U can be calculated as 8x

bc
+ 8xo

bs3k
. In this

analysis, we focus solely on the impact of client or S3 gateway
bandwidth on latency and throughput, excluding commonly
shared latency-relevant factors such as storage node bandwidth
and possible packet loss. If we want LU−U < LS3−U (i.e.,
having Storj Uplink perform better than Storj S3), bc has to
satisfy that bc > o−k

o bs3, and vice versa. We can see that
performance of Storj Uplink can be better than Storj S3 as
long as the client-side upload bandwidth approximates or even
exceeds the bandwidth available on the Storj S3 gateway.
Also, the download latency for Storj Uplink and S3 clients
are formalized respectively in Equation 1c and Equation 1d.

Since l < o in the current Storj implementation, a download
operation incurs less traffic and thus has a lower latency when
compared to the respective upload operation.

LU−U =
8x/k

bc/o

=
8xo

bck

(1a)

LS3−U =
8x

bc
+

8x/k

bs3/o

=
8x

bc
+

8xo

bs3k
(1b)

LU−D =
8xl/k

bc

=
8xl

bck

(1c)

LS3−D =
8xl/k

bs3
+

8x

bc

=
8xl

bs3k
+

8x

bc
(1d)

Case Study. Here we provide a case study to further demon-
strate the aforementioned theoretical analysis. Specifically,
in an upload operation, consider the file size is 64 MB
(x = 64), and the EU-DE client-side bandwidth is 100Mbps
(bc = 100). Also, erasure coding parameters are k = 29 and
o = 110 as aforementioned. Leveraging Equation 1a, we can
get LU−U ≈ 19s of Uplink in theory which is found to be
consistent with our realistic experiment results shown in Fig. 2.
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Fig. 2. Latency performance with dif-
ferent access options between Storj S3
gateway and Storj Uplink.

On the other hand, an S3
gateway server can have
a bandwidth of multiple
Gbps. Here we assume the
gateway bandwidth as 1,000
Mbps (bs3 = 1000). In this
case, LS3−U ≈ 7s which is
consistent with Fig. 2.

In short, we have carried
out a set of case studies
that have verified the ef-
fectiveness of the proposed
equations in terms of ap-
proximating real-world latency. The occurrence of this phe-
nomenon is not solely influenced by the Reed-Solomon erasure
codes [13] implemented in the Storj network, but also by the
bandwidth on the client-side. In order to have the Uplink client
achieve a performance comparable to or even better than the
S3 client, the client-side bandwidth should be approximated to
that of the Storj S3 gateway server. To verify this hypothesis,
next we will explore the client-side network bandwidth with
a focus on profiling its effect on storage performance.
Client Bandwidth. We set the client access options as Storj
Uplink and S3 CLIs, and the client region as AP-SG because
the AP-SG client-side cloud service can provide a larger net-
work bandwidth compared to other regions. Then we throttled
the client machine to 7 different bandwidth values (10Mbps
to 300Mbps as shown in Table IV) and instructed the client to
conduct both upload and download operations. Fig. 3 presents
the throughput and latency fluctuations achieved by clients
with different network bandwidth settings, wherein each line
denotes a combination of a file operation upon a file of 64 MB.
We observed that with the network bandwidth increasing, the
latency of file operations gradually decreases regardless of the

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 04,2024 at 13:00:16 UTC from IEEE Xplore.  Restrictions apply. 



0 50 100 150 200 250 300
Bandwidth (Mbps)

0
30
60
90

120
150
180
210
240
270

La
te

nc
y 

(s
)

Uplink-Upload
Gateway-Upload
Uplink-Download
Gateway-Download

(a) Latency.

0 50 100 150 200 250 300
Bandwidth (Mbps)

0
1
2
3
4
5
6
7
8
9

Th
ro

ug
hp

ut
 (M

B/
s)

Uplink-Upload
Gateway-Upload
Uplink-Download
Gateway-Download

(b) Throughput.

Fig. 3. The performance between Storj S3 gateway and Storj Uplink with
bandwidth throttling.

client types, which is proving the correctness of the assumption
put forward in the Theoretical Explanation part.

Finding 2: As introduced above, we have conducted
a set of control experiments to profile Storj’s perfor-
mance in different configurations. It turns out that
customers in EU-DE or NA-US can enjoy a better
performance compared to AP-SG, due to the unbal-
anced availability of storage nodes in different regions.
And the Storj S3 is a preferable CLI to upload a file
compared to the Storj Uplink in terms of performance.

B. Comparison with Centralized Cloud Storage

In this part, we move forward to compare Storj’s perfor-
mance with two representative centralized cloud object storage
services, in an attempt to understand its potential to comple-
ment or even replace centralized cloud storage services. To
profile their performance differences, we designed and carried
out a set of controlled experiments, e.g., various network and
computing settings, different file operations, and comparisons
of different storage services.
File Sizes. For a more comprehensive comparison between
decentralized and centralized object cloud storage systems, we
explore to what extent storage services can perform differently
when handling files of different sizes. Fig. 4 presents the
latency results of four storage options, when uploading or
downloading files of various sizes, in region EU-DE with
client-size bandwidth of 100Mbps. And we can see that if the
size of the file is less than 64MB, AWS S3 [2] and GCS [1] can
gain much better performance than Storj. However, as the file
size increases, the performance of Storj S3 is progressively
getting closer to the two centralized ones. Note that this
observation is also found consistent across other combinations
of client-side bandwidth and regions.
Client Locations. Similar to Storj, AWS S3 and GCS also
have server endpoints in AP, EU, and US. We thus step
forward to evaluate the potential performance variance across
regions for these storage options. Still, controlled experiments
are conducted with each involving a different region. In each
controlled experiment, clients are instructed to carry out file
operations against storage endpoints located in the same re-
gion. Latency results are listed in Table VII for a file of 64MB
and a client bandwidth of 100Mbps. Regardless of upload or
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Fig. 4. Latency of all four storage options when handling files of various
sizes (Location: EU-DE, Bandwidth: 100Mbps).

TABLE VII
LATENCY (S) RESULTS MEASURED AGAINST DIFFERENT REGIONS WITH A

FILE OF 64MB AND A CLIENT-SIDE BANDWIDTH OF 100MBPS.

Region Upload Download

Uplink S31 GCS1 AWS1 Uplink S3 GCS AWS

AP-SG 20.83 8.78 6.41 4.52 9.97 6.64 5.30 4.93
EU-DE 18.97 6.31 4.75 4.48 7.60 5.41 5.14 4.96
NA-US 19.70 5.91 5.48 4.42 7.58 5.87 4.96 4.84
1 S3 denotes Storj S3, GCS and AWS stands for Google Cloud Storage and AWS S3.
2 The average standard deviations of upload and download for Uplink, S3, GCS, and

AWS are 1.7s, 0.86s, 0.5s, 0.7s and 0.4s, 0.5s, 0.23s, 0.75s, respectively.

download, AWS S3 and GCS are found to have achieved better
performance compared to Storj Uplink and Storj S3. However,
in some scenarios, such as a client uploading data in the NA-
US or a client downloading data in the EU-DE, the Storj S3
can also achieve a performance that is comparable to GCS.
But in any case, Storj Uplink still has the worst performance
in data storage, among the four options.
Pricing Comparison between Storj and CCS. Nevertheless,
when a user selects a cloud storage option, pricing is another
important factor. We thus also investigated the pricing policies
of Storj [22] and the two traditionally centralized cloud storage
systems (AWS S3 pricing [23] and GCS pricing [24]). In a
nutshell, the storage cost depends on two key factors, one
is the size of the stored data, and the other is the bandwidth
consumption of data retrieval. We compared Storj with the two
centralized storage options in Fig. 5 which plot the monthly
cost of storing data across storage options, data size, and
download bandwidth consumption. For instance, when storing
100GB of data with 1TB download bandwidth consumption,
it will cost 94.6 dollars in AWS S3, 124.9 dollars in GCS,
and only 10.7 dollars in Storj. In summary, Storj provides a
more economic storage option compared to GCS and AWS S3,
regardless of the storage volume and bandwidth consumption.
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Finding 3: As profiled above, Storj still falls behind
in performance compared to traditional CCS systems,
especially in small file transmission. The root cause
for this is not only associated with the erasure code
redundancy mechanism but also influenced by the
quantity of storage nodes in the region. When it comes
to pricing, which is a crucial factor for most customers
in choosing a cloud storage provider, Storj holds a
significant advantage over centralized services.

V. SECURITY

In this section, we further profile the security implications
of the Storj network. In §V-A, we first evaluate the network
threats co-located with Storj storage nodes, i.e., the extent
to which Storj nodes (IPs) have been involved in malicious
activities. We then look into the Storj protocols and have
identified a security vulnerability that allows a Byzantine node
to manipulate its storage reputation (also called reputation
manipulation vulnerability) in §V-B.

A. Threat Reputation of Storage Nodes

Various security measures have been deployed to detect and
block malicious network traffic, such as firewalls and deep
packet inspectors. The reputation of IP addresses involved
in a traffic flow is a critical factor well considered by these
security tools to decide the actions. A traffic flow is more likely
to be blocked when it involves IP addresses that are either
heavily abused or under the control of miscreants [25]. In
this part, we profile the network reputation for the 155,457 IP
addresses of storage nodes by VirusTotal [26], which is a well-
recognized open threat intelligence to extract threat reports.
From the observation, 4.48% of all the storage nodes’ IPs
have been associated with at least one malicious activity. The
associations with malicious activities can be further divided
into two categories including communicating with malware
samples (5,643 IPs, 3.63%) such as being C2 servers in
botnets, and referred to or embedded as part of malware
payloads (1,321 IPs, 0.85%).
Communicating and Referrer Malware. We further look
into the 5,643 storage IP addresses that have been contacted
by one or more malware samples. First of all, 19,202 unique
malware samples have ever communicated with these IPs in
total. And these IPs have ever hosted 4,869 (14.8%) storage
nodes. Leveraging the malware metadata included in Virus-
Total reports, we are allowed to group these communicating
malware samples (C-Malware) by their categories, the top 10
of which are listed in Fig. 6(a). Specifically, over 86% of
malware samples belong to Trojan while 6.7% are labelled
as Virus. Particularly, 0.3% of malware samples are crypto
mining software, which suggests some storage nodes are co-
hosted on the same IPs with suspicious mining activities.
For instance, “5.*.*.178” used to serve as a storage node
(“1Jkrxg****J7BA”) as well as a mining pool server (litecoin-
pool.org) at the same time. In addition, Fig. 6(b) presents the
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Fig. 6. Distribution of communicating malware samples across malicious
categories and file types.

distribution of malware samples in terms of their file types,
around 76% are Win32 EXEs while 20% are Android apps.

Besides, we also shed light on referrer malware samples,
i.e., malware samples with each embedding in its payload at
least one storage IP address. Statistically, over 1,321 storage
node IP addresses have been referred to by 1,050 unique
malware samples. It is surprising that some of the IP addresses
referred to by the malware are private IP addresses. After
further excavation of this discovery, we found that over 102
private IP addresses correspond to 107 unique storage nodes.
This implies that the private IPs stored in satellites are not
reachable to Storj storage nodes, which can disrupt the data
uploading process of storage clients. We also ordered the top
10 referrer malware samples by the number of storage IPs each
of them has referred to. It’s very interesting that the malware
samples named “Perfect-Privacy-VPN Setup.exe”, which is a
port forwarding service provider (Perfect Privacy [27]), have
referred to the most storage node IPs associated with over
hundreds of storage nodes. This suggests commercial port
forwarding services are also utilized by storage nodes to either
hide their real public IP address or screen their internal storage
servers to the public, as depicted in §III-B. We reported the
above-mentioned observation to Storj.io, and the Storj team
evaluated it and concluded it was a common threat.
Port Forwarding Services. To investigate this observation,
we studied the public port forwarding services adopted by
storage nodes in the Storj network. Among the 155K storage
IPs, 1,492 (0.96%) are found to be exclusively used to serve as
the tunnel servers of port forwarding services. The list of the
involved port forwarding services such as pktriot.net, pack-
etriot.net, portmap.host, portmap.io, airvpn.org, airdns.org,
and ngrok.io. Despite allowing running a storage node even
without a public IP address, port forwarding services can
compromise the reputation of storage nodes since such ser-
vices have been found to be abused by various malicious
activities such as botnets and spam distribution, as revealed
in VirusTotal reports and previous works [28]. Therefore,
co-location with malicious activities on the same IP will
likely render a storage node suspicious, which can further
get traffic toward a storage node blocked by security tools
such as firewalls. For instance, a seriously polluted storage
IP, “193.*.*.99”, can in the meanwhile host tens of storage
nodes. Further analysis reveals that this IP address is used
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to serve as a C2 server for multiple botnets and is actually
exclusively used by a port forwarding service, portmap.io,
to host tunnels toward network services deployed in private
networks. Apparently, these port forwarding services have
been used for tunneling traffic toward both storage nodes and
various malicious servers (e.g., C2 servers in botnets).

Finding 4: Many storage IP addresses (4.48%) are
observed to have been associated with various malware
samples. Additionally, internet-wide port forwarding
services are widely used by storage nodes (0.96%
storage nodes IPs), which can make storage nodes co-
locate with various malicious activities such as botnets
and cryptomining. This can further compromise the
reputation of involved storage nodes and thus under-
mine the availability and resilience of the Storj.

B. Storage Reputation Manipulation
In this part, we present another fundamental security risk or

vulnerability that is inherent in Storj’s design. In a nutshell, a
Byzantine storage node, especially a node with an unauthentic
low reputation, is found to be able to maliciously tamper its
storage reputation in an attempt to improve its chance of being
selected for data storage.
Reputation in Storj. As mentioned in the background section
(§II), a storage node is responsible for data storage and data
retrieval and earns rewards in return. From [29], the more
frequently that a storage node is selected to store new data,
the more egress bandwidth it can likely incur, and the more
rewards the storage node can receive. Every time a new
segment is uploaded to Storj, the satellite will carry out a
node selection process to surface out n = 110 from the
pool of tens of thousands of storage nodes, so as to store
the erasure-coded pieces. Nodes are selected by considering a
set of factors (e.g., subnet, latency, reputation), among which,
reputation is one of the most important factors [30]. A storage
node with a high reputation tends to have a higher chance of
being selected by the satellite. And during the node selection
process, various reputation factors will be considered. These
reputation factors include audit failures, successful PUT/GET
count, PUT/GET selection count, PUT/GET selection success
count, etc. Specifically, the longer a storage node joins the
Storj network, the higher its PUT selection count, which will
thus have a positive impact on its reputation.

Nevertheless, our analysis of Storj’s source code reveals
that some reputation factors can be easily manipulated. In
other words, a Byzantine node can forge a set of reputation
factors (PUT/GET selection count, successful PUT/GET, and
PUT/GET selection success count, etc) to improve its over-
all reputation. We consider such kinds of misbehavior as a
reputation manipulation vulnerability.
Testbed. To demonstrate the reputational manipulation risks
described above, we deploy the Storj (v1.40.48) Test Net-
work [31] on a Linux server (Ubuntu 20.04) with 256GB

8https://github.com/storj/storj/releases/tag/v1.40.4

RAM as a testbed. Our testbed consists of one Uplink client,
ten unique storage nodes, and one satellite. Leveraging this
testbed, we evaluate multiple feasible vulnerability channels
for a Byzantine storage node to manipulate reputation factors
and intentionally enhance its overall reputation.
Implications. An important security vulnerability in Storj is
the collusion between a Byzantine storage node and a storage
client. Specifically, an adversary can serve as a storage node
and a storage client at the same time, and modify the Uplink
client so that it can be instructed to upload file pieces to
the designated storage nodes (under the adversary’s control)
rather than the ones returned from the satellite. Leveraging
this technique, a Byzantine storage node can quickly improve
its reputation. In addition to promoting a Byzantine storage
node, an adversary can also demote an authentic storage
node by forging upload/download failures. Such failures will
lower the success rates of PUT and GET operations, and thus
compromise the reputation of a victim storage node.

To demonstrate this vulnerability, we conduct experiments
in the testbed leveraging a modified Uplink CLI and confirm
that the reputation factors of the corresponding storage nodes
can be successfully manipulated. As a result, unauthentic
storage nodes may gain unfair advantages over authentic nodes
when competing for storage requests, and data can get stored
in low-reputation nodes which can incur a higher probability of
data loss. Also, authentic storage nodes will mistakenly receive
fewer incentives and have a higher probability of dropping out
of the network. In short, storage reputation manipulation will
compromise the stability and scale of the Storj network. We
have also reported this responsible disclosure to Storj.io, and
Storj’s team assessed this to be a common vulnerability.

Finding 5: As discussed above, important reputation
factors can be manipulated by an attacker by forging
storage transactions. Particularly, malicious storage
nodes can unfairly optimize their reputation, while
compromising that of an authentic storage node, which
may disrupt the Storj ecosystem to some extent.

VI. ETHICS

In this study, we take ethical issues seriously and have
carefully designed our methodologies in a way that can avoid
ethical concerns. First, the proposed storage node collector
does not interact with storage node operators and customers
of the Storj network. Instead, the collector only sends requests
to the satellites at a very limited rate. We run the node collector
on a daily basis with a fairly low request frequency (as men-
tioned in §III-A), and we believe our collection jobs should
not have disrupted the regular operations of the satellites.
Besides, as aforementioned in §IV, we uploaded large-scale
files to the Storj network with payments, and we believe
that these file operations (upload/download) have no ethical
implications for the ecosystem. Lastly, when exploring the
security vulnerabilities of the Storj network, we evaluated
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the vulnerabilities in a controlled and simulated environment,
rather than the realistic Storj network.

VII. RELATED WORK

Decentralized Cloud Storage. A set of survey studies [4], [8],
[21] are there to provide an overview of DCS services from
various aspects. Nazanin et al. [8] conduct a survey on four
blockchain-based decentralized storage systems, namely, Storj,
Sia, Filecoin, and Swarm9. Similarly, Daniel et al. [4] give a
qualitative comparison of these emerging and decentralized
cloud storage services, with future challenges derived and
research goals distilled. Also, [10] is dedicated to studying
IPFS’s performance, security, and open issues. Different from
these studies on DCS, our work carries out the first empirical
study on Storj, and our performance measurement is conducted
on realistic storage systems rather than simulated ones.
Research on Storj. Zhang et al. [32] proposed an attack,
namely, the frameup attack, in which the attacker can store
unencrypted data on the hard drives of a victim which shares
the hard drives for rewards, and thus open the door for framing
the victim. And the authors utilized Storj as a testbed to
demonstrate the proposed attacks. Furthermore, Figueiredo et
al. [9] provide an architectural overview of Storj along with the
discovery of a DoS vulnerability. Different from these works,
we carry out an extensive and empirical measurement of Storj,
along with novel findings regarding its landscape, quality of
service, and security implications.

VIII. CONCLUSIONS

We present the first empirical measurement of Storj, with
a focus on its ecosystem, performance, and security im-
plications. Our research is enabled by novel measurement
techniques to capture storage nodes, profile Storj’s quality
of service, and evaluate the potential risks in a simulation
environment. A set of novel findings are distilled, particularly,
a large volume of storage nodes are observed with a wide
distribution. However, Storj customers in different regions can
have a different QoS likely due to the imbalanced distribution
of storage nodes. Also, among IP addresses hosting storage
nodes, 4.48% have been associated with various malicious ac-
tivities (e.g., botnets, cryptomining), which can likely compro-
mise the reliability of the Storj network. Besides, we also have
discovered vulnerabilities in Storj’s auditing system where
Byzantine nodes could maliciously boost their reputation and
demote competing nodes, which can potentially undermine the
quality of service and the fairness of the Storj network.
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