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Abstract
We carry out the first in-depth characterization of residential

proxies (RESIPs) in China, for which little is studied in previous
works. Our study is made possible through a semantic-based clas-
sifier to automatically capture RESIP services. In addition to the
classifier, new techniques have also been identified to capture RE-
SIPs without interacting with and relaying traffic through RESIP
services, which can significantly lower the cost and thus allow
continuous monitoring of RESIPs. Our RESIP service classifier has
achieved good performancewith a recall of 99.7% and a precision of
97.6% in 10-fold cross validation. Applying the classifier has iden-
tified 399 RESIP services, a much larger set compared to 38 RESIP
services collected in all previous works. Our effort of RESIP captur-
ing leads to a collection of 9,077,278 RESIP IPs (51.36% are located
in China), 96.70% of which are not covered in publicly available RE-
SIP datasets. An extensive measurement on RESIPs and their ser-
vices has uncovered a set of interesting findings as well as several
security implications. Especially, 80.05% RESIP IPs located in China
have sourced at least onemalicious traffic flows during 2021, result-
ing in 52-million malicious traffic flows in total. And RESIPs have
also been observed in corporation networks of 559 sensitive organi-
zations including government agencies, education institutions and
enterprises. Also, 3,232,698 China RESIP IPs have opened at least
one TCP/UDP port for accepting relaying requests, which incurs
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non-negligible security risks to the local network of RESIPs. Be-
sides, 91% China RESIP IPs are of a lifetime fewer than 10 days
while most China RESIP services show up a crest-trough pattern
in terms of the daily active RESIPs across time.
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1 Introduction
In a recent cyberattack campaign attempting to break into hun-

dreds of intelligence targets in US during 2021, residential proxies
(RESIPs) were used by attackers to masquerade themselves as be-
nign Americans [43].These attacks are believed to be ongoing with
intended victims includingUS government agencies, non-government
organizations, as well as critical IT firms. Since residential proxies
are widely located in home networks or cellular networks, traffic
relayed through residential proxies will look much less suspicious
compared to traditional proxies such as VPN and Tor. This char-
acteristic is being utilized by attackers to masquerade their attack
traffic as benign visits from employees and thus evade detection
or blocking deployed by organizations. Also, residential proxy ser-
vices are publicly available on the Internet and can be easily pur-
chased with little or no identity checking [25].

As RESIP services are becoming increasingly popular since emerged
in 2016, it has attracted not only abuse from attackers, but also in-
terests from the research community. [25] conducted a large-scale
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infiltration on 5 representative RESIP services with more than 6-
million RESIP IPs identified. Then [44] steps forward to reveal that
RESIP proxies may be harvested through unauthorized NAT entry
injection by exploiting a UPNP vulnerability. Besides, [26] moves
the spotlight closer to mobile devices and explores how mobile de-
vices have been recruited to serve as RESIPs along with a set of
mobile proxy SDKs identified and profiled.

However, the RESIP ecosystem is quickly evolving, e.g., by De-
cember 2021, among 38 RESIP services studied in these previous
works, 7 have disappeared and one (Luminati) has rebranded itself
as BrightData [23]. Also, RESIP services in previous works were
identified either manually or semi-automatically, and it turns out
that their coverage of RESIP services is low, as demonstrated in our
study (§3.1). Therefore, it is unclear whether the understandings
generated from previous works can still be applicable to the up-to-
date and ever-evolving RESIP ecosystem. Besides, each of previous
works profiled RESIP services for only several months, due to the
costly infiltration framework which requires service purchase and
traffic relaying. For such an ever-growing ecosystem, a low-cost
methodology is necessary to continuously capture RESIPs and pro-
file RESIP services. Further, previous works are dedicated to RESIP
services available on the English Internet, and have missed region-
dedicated RESIP services. Especially, our study has identified 64
previously unknown RESIP services that are operated in China and
dedicated to the China market. Many of these Chinese RESIP ser-
vices have been there for years and several claim to have millions
of RESIPs located in China. Although previous works have cap-
tured globally distributed RESIPs at the scale of millions, very few
of them are located in China. In summary, little is known about
this regional RESIP ecosystem as well as its security implications.
Lastly, although [26] has revealed the recruitment of mobile de-
vices by several RESIP services, the supply chain of RESIPs has yet
to be further uncovered, which is crucial for understanding and
addressing the security risks of RESIPs.

Both the ever-evolving RESIP ecosystem and the aforementioned
limitations in previous works motivate us to carry out this study.
Standing on the shoulders of previous works, our study aims to
move forward in the following directions. First of all, we want
to achieve an in-depth understanding of the RESIP ecosystem in
China with a focus on its landscape, evolution, and security impli-
cations. Besides, we want to build up a detector that can automat-
ically identify all publicly available RESIP services regardless of
regions or languages. Furthermore, we want to identify low-cost
techniques for capturing RESIPs and build up a radar to continu-
ously identify and profile newly emerged RESIPs. Lastly, we want
to dig deeper into the supply chain of RESIPs and uncover any pre-
vious unknown participants in this ecosystem.

To achieve these research goals, we first explore how to automat-
ically identify publicly available RESIP services. We observe that a
RESIP service (RPS) usually operates an independent website for
service promotion and customer management. Also, a RPS website
has unique semantic features especially on the landing page. Par-
ticularly, a typical RPS website tends to display RPS-relevant key-
words of various categories in the text elements including the title,
the description, among others. Typical keywords relevant to RPS
can be proxy IP types (e.g., residential IP and mobile proxy), proxy

protocols (e.g., SOCKS, HTTPS), and proxy features (e.g., unblock-
able and undetectable). Leveraging these observations, we engineer
a set of robust features and build up an effective classifier to auto-
matically decide whether a given website is RPS or not. However,
One obstacle we encountered is the unavailability of enough RPS
websites for training and evaluation, since previous works identi-
fied only 38 RPS websites in total and 7 of them have disappeared.
We addressed this by means of a strategy involving multiple itera-
tions of training weak classifiers, predicting, and manually verify-
ing sampled positive predictions to extend the ground truth. Our
ultimate RPS classifier has achieved a recall of 99.53% and a pre-
cision of 97.62% under 10-fold cross validation. We then applied
this classifier to identifying Chinese and English RPS websites. In
total, 399 RPS websites have been captured, among which, 368 are
unknown before. These newly identified RPS websites include 64
Chinese RESIP services and 304 English RESIP services.

Given the 64 Chinese RESIP services, we move to carry out the
first in-depth characterization of this ecosystem, starting from cap-
turing RESIPs. We first selected 5 Chinese RESIP services and car-
ried out a 6-month infiltration by adopting the framework pro-
posed in [25]. The idea behind this framework is to relay well-
crafted HTTP/HTTPs requests through the RESIP services, to web
servers under our control, which will allow the web servers to
observe IP addresses of the exit nodes, namely, the RESIPs. How-
ever, as discussed above, such an infiltration is costly and involves
much manual effort for every RESIP service. This costly infiltra-
tion framework is necessary for traditional RESIPs which work
in a backconnect mode and RESIPS are hidden behind the gate-
way servers controlled by the RESIP service. However, we observe
that many RESIP services as identified by our classifier offer RE-
SIPs without gateway servers as the intermediate. Specifically, RE-
SIPs in this new category will listen to specific TCP/UDP ports
and accept relaying requests that are directly originated from the
proxy customers. To distinguish from traditional backconnect RE-
SIPs (BC-RESIPs), we call such RESIPS as direct RESIPs. Also ob-
served is that some proxy services will bind active direct RESIPS
to their subdomains through DNS. Among all Chinese RESIP ser-
vices, 42 have been confirmed to offer RESIPs through such a chan-
nel. Leveraging Passive DNS, we are allowed to extract all the his-
torical RESIPs along with their lifetime. We call these direct RE-
SIPs as DP-RESIPs since they are captured through passive DNS.
Another channel we utilized to capture RESIP is RESTful APIs ex-
posed by some RESIP services. These RESTful APIs are provided
to proxy customers to fetch up-to-date direct RESIPs. To distin-
guish from BC-RESIPs and DP-RESIPS, we call such RESIPs as DA-
RESIPs since they are collected through APIs. In total, we have cap-
tured 9,077,278 RESIP IPs among which, 8,176,522 are BC-RESIP
IPs, 2,283,665 are DA-RESIP IPs, and 1,471,361 are DP-RESIP IPs.

We then carried out an extensive measurement on the captured
RESIP services and RESIP IPs, which is facilitated by two threat in-
telligence platforms alongwith several other complementary datasets.
The key findings of our study are listed as below.
• We have captured the largest RESIP dataset with 9,077,278 RE-
SIP IPs and 399 RESIP services. More importantly, 64 RESIP ser-
vices are dedicated to China while 4,661,934 RESIP IPs are located
in China, which is much larger than previous datasets. In addition
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to a large volume of RESIP IPs in China, the left RESIP IPs are still
widely distributed in 226 countries and regions, 49,461 ISPs, 207 /8
IPv4 CIDRs, and 24,691 autonomous systems, which is comparable
to previous RESIP datasets. Also, compared with RESIP datasets re-
vealed in previous works, 8,777,808 RESIP IPs and 368 RESIP web-
sites are newly captured.
• Leveraging passive DNS, we are allowed to profile for the first
time the evolution and lifetime of RESIPs and RESIP services. Among
the 42 RESIP services offering DP-RESIPs, many show up a crest-
trough pattern for the number of daily active RESIPs across time.
And it usually takes 3 years on average for a RESIP service to ar-
rive at the crest, in another word, gain the maximum number of
RESIPs. On the other hand, a RESIP service can collapse quickly in
less than 129 days from the crest to the trough. Regarding RESIPs,
RESIPs are observed to have a short lifetime, regardless of RESIP
services, e.g., 91% DP-RESIPs have a lifetime of fewer than 10 days.
• Leveraging multiple threat intelligence platforms, we have iden-
tified various malicious activities colocated with RESIPs during
the same period. Especially, 62.61% China RESIP IPs have been
detected to conduct cryptojacking activities with each associated
with an average number of 36 cryptojacking traffic flows during
2021. Also, 3129 China RESIP IPs are found to have ever distributed
payloads of a large-scale botnet named Mozi, while 21.00% China
RESIP IPs were detected as bots by a proprietary threat intelligence
platform.
•China RESIPs have been observed in corporation networks of 559
sensitive organizations including government agencies, education
institutions and enterprises. One explanation is that some devices
in the local networks of these organizations serve as RESIPs, which
raises concerns regarding the security of local network of these
organizations. Also, each of the aforementioned 3,232,698 direct
China RESIPs has opened at least one TCP/UDP ports as instructed
by the respective RESIP service, which also raises non-negligible
potential risks to the local networks and the local devices.

In summary, we have carried out an in-depth characterization of
the RESIP ecosystem in China, with a set of insightful findings and
observations. Also, our study is made possible through a novel RPS
website classifier as well as multiple new channels to collect RESIP
IPs in a continuous and low-cost manner, which, along with the re-
sulting RESIP datasets, can benefit future research in this area.The
resulting datasets are made publicly available on https://rpaas.site.

2 Background
Residential proxies. In recent years, residential proxies (RESIPs)
keep evolvingwithmore service providers emerging and ever-growing
proxy scale. A typical RESIPworks in a backconnect modewherein
the RESIP node is hidden behind the gateway servers operated
by the respective service. In the backconnect mode, proxy traffic
sourced from a proxy customer will be first routed to the gateway
server, which in turn forwards it to the specific RESIP node, then
to the traffic destinations. What’s more, most services will allow
proxy customers to specify where they want to exit the relayed
traffic, in terms of countries and cities. Also, proxy customers are

able to stick their traffic to the same exit node, either through pass-
ing the same session id, or connect to some sticky proxy gate-
ways which usually bind to a exit node for every 5 or 10 min-
utes [35]. Varied by RESIP services, multiple proxy protocols are
supported, especially HTTP/HTTPS and SOCKS. A new trend we
have observed is the support of more proxy protocols by RESIP ser-
vices, compared to previous works. Specifically, as revealed in pre-
vious works, RESIP services usually support only HTTP/HTTPS
and SOCKS protocols. However, by looking up documents offered
by the 47 China RESIP services under our study, we find out that
34 of them have also supported at least one VPN protocols includ-
ing PPTP, L2TP，SSTP, OpenVPN, and IPsec. Regarding pricing, a
RESIP service usually offers several monthly subscription options
which differ in the price and resource constraints (e.g., traffic vol-
ume). Taking ProxyRack, one of the long-existing and popular RE-
SIP service, as an instance, a monthly subscription with 10GB data
is offered at a price of 49.95$1, throughwhich, proxy customers can
access more than 5-million RESIP IPs. In the meantime, a monthly
plan at 65.95$ is also provided and it allows unlimited data access
but is constrained with 5 concurrent connections2.

In our study, the terms of RESIP and RESIP IP will be exchange-
able, since the IP address is the only public available information
we can have to refer to a RESIP. Although different RESIP ser-
vices can be operated by the same underlying operator, only a few
cases have been observed and it is challenging to accurately cluster
all services into their respective operators. Therefore, we consider
each RPS website as a RPS service that is independent from others
unless deterministic connections have been observed.
Passive DNS. Passive DNS refers to datasets of historical DNS
records. And each passive DNS record may also contain the cu-
mulative query volume and the time frame from when the DNS
record is first observed to when it expires. Passive DNS is usually
collected from widely distributed DNS resolvers across a long pe-
riod. Passive DNS serves an important role in security investiga-
tions such as detecting and profiling malicious domains [5, 6]. In
our study, we apply passive DNS to identifying RESIPs as well as
profiling evolution of RESIP services.

3 Methodology and Datasets
To profile the RESIP ecosystem in China, we need to first ex-

tensively identify RESIP services as well as selecting out represen-
tative ones. Once RESIP services identified and selected, their res-
idential proxies (RESIPs) should be captured at a large scale and
across a period long enough. In addition, relevant datasets (e.g.,
passive DNS) should also be collected to facilitate an in-depth char-
acterization of RESIP services, RESIP devices, and RESIP IPs. This
section serves to detail the respective methodologies as well as
summarizing the resulting datasets.

3.1 Identifying RESIP Services
In previous works, RESIP services were collected either manu-

ally or semi-automatically, which is not suitable to continuously
capture emerging RESIP services. Also, as demonstrated by our de-
tection, previous works have unfortunately missed many RESIP
services, regardless of the regions. In this study, we explore for the
1https://www.proxyrack.com/premium-geo-residential/#pricing
2https://www.proxyrack.com/private-residential-proxies/#pricing
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first time an intelligent pipeline to automatically identify RESIP
services.

We observe that a RESIP service (RPS) usually operates an inde-
pendentwebsite for service promotion and customermanagement.
Therefore, you can decide whether a website is a RPS by looking
into the text elements of its website especially the website land-
ing page (homepage). To automatically identify RESIP services that
are public available on the web, we design and implement an NLP-
driven website classifier to reliably decide whether a give website
is a RPS, and we call this classifier as the residential proxy service
classifier (RPSC).
RPS candidates. As the first step of our pipeline, we queried ma-
jor search engines with RPS-relevant keywords. Among these well-
crafted keywords, some are adopted from previous works [25, 26,
44] while others are manually extracted through visiting RPS web-
sites. Table 1 lists them along with their translations in Chinese.
These involved search engines include Google Search, Bing Search
and Baidu Search. For each search keyword and its language vari-
ants, we query all search engines and retrieve up to 1K resulting
entries for each query. In total, 12,591 distinct search result entries
are collected with each uniquely identified by an URL.These 12,591
URLs belong to 4,675 distinct apex domains, each of which is con-
sidered as a RPS candidate. To automatically classify if an apex do-
main is an RPS website, we move to build up an effective classifier
leveraging semantic features extracted from the webpages hosted
under each apex domain.
Groundtruth collection.We then collected a groundtruth dataset
consisting of both RPS websites and non-RPS ones. Specifically,
the non-RPS websites were collected by selecting the top 1K out
of the Tranco top website list [34]. However, it turns out to be
challenging to collect a comparable amount of RPS cases since pre-
vious works [25, 26] revealed only 38 RPS websites in total, among
which, 7 were found to be out of service by Nov 2021. To further
increase RPS cases in our groundtruth, we carried out a collection
process involving a cycle of training aweak classifier on the prelim-
inary groundtruth dataset , applying the weak classifier to RPS can-
didates, sampling and verifying positive predictions, and extending
the groundtruth with confirmed RPS predictions. And this cycle
continues until a reasonable number of RPS cases are captured.
In the training step, a preliminary classifier is trained upon the
current groundtruth dataset. The resulting classifier, despite weak,
can still help exclude non-RPS cases from the RPS candidates and
thus narrow the search space for our manual confirmation. As the
step ofmanual confirmation, we sample 50 positive predictions and
manually decide whether they is true positive. A website is consid-
ered as a true positive (an authentic RESIP website) only when it
has an independent brand name, and is offering proxy services of
which the underlying proxies should be well claimed as residential
ones. The confirmed true RPS cases are added to the groundtruth
before entering the next iteration. Through 3 iterations, we have
successfully collected 79 extra RPS websites. Finally, we have com-
posed a groundtruth dataset consisting of 110 RPS websites and
1,073 non-RPS websites. This dataset, albeit not well balanced, is
found to be good enough to train an effective RPS classifier, as
evaluated below.

Table 1: RPS-relevant keywords for querying search en-
gines.

No English Chinese

1 residential ip provider 住宅 IP供应商
2 residential proxy provider 住宅代理供应商
3 residential proxy service 住宅代理服务
4 residential proxies pricing 住宅代理定价
5 static residential ip 静态住宅 IP
6 static residential proxy 静态住宅代理
7 dynamic ip proxy 动态 IP代理
8 isp proxy ISP代理
9 resi proxy RESI代理
10 rotating proxy 旋转代理
11 proxy pool buy 代理池购买
12 buy proxy servers 购买代理服务
13 buy unlimited proxies 购买无限代理

Data collection and preprocessing. Regardless of training the
preliminary or the final classifiers, a prior step is to crawl and pre-
process webpages for websites in the groundtruth dataset as well
as all the RPS candidates. For each website, starting from the home-
page. our crawler recursively visits any new in-site webpages as
referred by the visited ones until the predefined threshold of 100 is
reached or all the in-site webpages have been crawled. Also, con-
sidering web elements can be asynchronously loaded, instead of
static crawling, our crawler dynamically renders each webpage
by instructing a headless browser through the Selenium frame-
work [37]. As a result, awebpage’sHTMLfile, images, and JavaScript
files will be loaded and saved as 𝑑𝑎𝑡𝑎𝑤𝑒𝑏𝑝𝑎𝑔𝑒 .

Once crawled, all the texts residing in the HTML DOM tree will
be further extracted and grouped into 5 categories: the title, the
description meta, the keywords meta, the tags meta, as well as the
body text (text paragraphs in the body tag). Since a captured web-
page can in various natural languages not limited to Chinese and
English, Google Cloud Translation API is utilized to decide the cor-
responding natural language and translate the text paragraphs into
English if necessary.Then, all these text paragraphs will further go
through a set of well-adopted NLP preprocessing steps including
tokenization, stop word removing, and lemmatization, before serv-
ing as the source to extract classification features.
Feature engineering Given the groundtruth dataset, we move
forward to craft effective features from processed text paragraphs
for each website. The features are designed to well distinguish RPS
and non-RPSwebsites.We observe that a RPSwebsite tend to present,
especially on the homepage, RPS-specific keywords of various cat-
egories, such as proxy IP types (residential IP and mobile proxy),
proxy protocol (SOCKS,HTTPS, andUDP), proxy features (unblock-
able and undetectable), purchase/subscription (buy proxies and proxy
access). Therefore, we adopt a keyword-based feature engineering
strategy and limit our feature engineering scope to the homepage
of each website. In short, we have identified a set of 12 keywords,
e.g., residential, proxy, rotating, andHTTP.These keywords are found
to be effective in terms of distinguishing RPS and non-RPS web-
sites. To identify these keywords, text paragraphs of each home-
page is considered as a document. And tf-idf [36] is utilized to se-
lect out words that are important for RPS documents but not that
important for non-RPS documents.
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Figure 1: Stats of our infiltration of China RESIP services in
terms of cumulative probes and unique IPs.

Training and evaluation. Upon groundtruth collected and fea-
tures defined, we move to train and evaluate our classifiers. When
training the preliminary classifiers, we hardcode the classification
algorithm as Random Forest with 25 decision trees, in the hope of
speeding up the extending of groundtruth. However, when train-
ing the final classifier, we experimented in details various clas-
sification algorithms along with their hyper-parameter combina-
tions. Evaluation reveals that the best performance is achieved by
Random Forest with 200 decision trees. And it achieves a recall of
99.72%, precision of 97.63%, and F-1 score of 98.66% in 10-fold cross
validation. This model is thus considered as the final model to do
predictions on the RPS candidates.
Prediction and validation.Thefinal classification model has pre-
dicted 338 RPS candidates as positive (RPS) and the left as negative
(non-RPS). To further validate the performance of this classifier,
we manually visited each of these positive predictions to verify if
it is a RPS website. It turns out 289 of them (85.50%) were found
to be true RPS, thus further demonstrating the classifier’s perfor-
mance. Among all the 289 RPS service, 238 are English websites,
51 are Chinese websites. To evaluate the recall of our classifier on
the unlabelled dataset, We also sampled and manually verified 100
positive predictions and 100 negative predictions. As a result, 89
were confirmed to be true positives while 6 were found to be false
negatives, which denotes a recall of 93.68%. We also looked into
the false positive and false negative cases, in an attempt to identify
directions to further enhance our classifier. Among false positives,
most are websites dedicated to rating and recommending RESIP
and general proxy services, e.g., https://www.bestproxyproviders.
com/, and https://httpproxy.us/. Among false negatives, somewere
missed likely due to the fact that RESIP-relevant keywords are ei-
ther buried deeply or not even available on the homepage, e.g.,
https://endproxies.com/ and https://rola-ip.co/. Some were missed
because our dynamic cralwer (a headless browser) was quickly
redirected to the login pages when visiting their homepages, there-
fore missing the RESIP elements on their homepages. Examples in-
clude https://www.lemonproxy.net/ and https://aquaproxies.com/.
We leave it as future work to conquer these performance issues.
Key results. In total, we have identified 399 RPS websites among
which 368 are previously unknown and thus newly identified. Among
these newly identified RESIP services, 64 are Chinese RESIP ser-
vices and 304 are English ones.

Table 2: Results of our infiltration of China RESIP services
for capturing backconnect RESIPs.

Provider Period Days RESIPs Probes

PinYiYun 04/10/21 - 10/15/21 143 2,983,867 54,179,345
IPIDEA 04/10/21 - 06/09/21 61 1,375,064 3,599,792
JiGuang 04/10/21 - 10/15/21 178 1,732,601 44,057,230

XiaoXiang 04/10/21 - 10/11/21 177 1,513,640 57,859,909
FanQie 04/10/21 - 08/18/21 111 4,453,184 8,889,715
Overall 04/10/21 - 10/15/21 181 8,176,522 168,585,991

3.2 Capturing Backconnect RESIPs
Given a set of Chinese RESIP services identified, we move to

capture their RESIPs through multiple channels. Firstly, we adopt
the infiltration framework as proposed in [25] to capture backcon-
nect RESIPs (BC-RESIPs). Backconnect RESIPs are residential prox-
ies that are hidden behind gateway servers of RESIP services. A
relaying request will first be routed through the gateway server, be-
fore exiting at a RESIP. In our infiltration, 5 representative Chinese
RESIP services are selected and purchased, including PinYiYun, IPI-
DEA, JiGuang, XiaoXiang, and Fanqie, all of which claim to have
a large-scale backconnect RESIP pool. For each RESIP service, we
relay network traffic, through its RESIP pool, to network servers
under our control. In this case, RESIPs will serve as the ultimate
exit nodes for the relayed traffic, and our servers can thus observe
the public IP addresses of the involved RESIPs.
Key results. We carried out the infiltration spanning 6 months be-
tween April 2021 and October 2021. As a result, we have captured
8,176,522 backconnect RESIP IPs through 168,585,991 successful
probes. Table 2 presents more detailed statistics in terms of the
infiltration period, the captured RESIPs, and the involved probes.
Besides, Figure 1 plots how the number of probes and RESIP IPs
accumulate across our infiltration period.

3.3 Capturing Direct RESIPs
In previous works, only backconnect RESIPs were discovered

and studied. However, many RESIP services identified by our clas-
sifier are observed to offer a new category of RESIPs without gate-
way servers as the intermediate. In another word, RESIPs in this
new category will listen to specific TCP/UDP ports and accept re-
laying requests that are directly originated from the proxy cus-
tomers. We call such a category of RESIPs as direct RESIPs. Lever-
aging this observation, we have identified, for the first time, two
alternative channels for capturing RESIPs, which can help avoid
the time-consuming and costly infiltration of RESIP services.

Some RESIP services have offered RESTful web APIs for cus-
tomers to specify query parameters and fetch qualified direct RE-
SIPs. These RESIP services include JiGuang, PinYiYun and XiaoXi-
ang. We thus periodically queried these APIs during the aforemen-
tioned infiltration period between April 2021 and October 2021.
Across API endpoints and RESIP services, each resulting RESIP en-
try usually consists of the RESIP IP and the RESIP port. Despite var-
ied by services, a fetched RESIPmay also include the credentials for
access control, e.g., you need to register the IP of your host under
some RESIP services before you can fetch direct RESIPs. We call di-
rect RESIPs collected through querying APIs asDA-RESIPs, so as to
distinguish from backconnect RESIPs as well as direct RESIPs col-
lected through other channels. Also, we randomly sampled some
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freshly captured DA-RESIPs, and relayed traffic through them to-
wards our web servers, through which, we have verified they are
authentic RESIPs.

In addition,many RESIP service expose their direct RESIPs through
DNS. Specifically, a RESIP service may define a set of subdomains
under its control, and dynamically create and updateDNSA/AAAA
records to map these subdomains to active direct RESIPs at a given
time. Therefore, to fetch direct RESIPs, a proxy customer can sim-
ply query the DNS resolvers for one of the RESIP subdomains.
Also, RESIPs grouped under the same subdomain usually share
some common properties such as ISP, location, stability, etc. For in-
stance, shenlongip.com have defined 816 subdomains and 92% with
each following the pattern of {𝑝𝑟𝑜𝑣𝑖𝑛𝑐𝑒_𝑐𝑜𝑑𝑒}{𝑐𝑖𝑡𝑦_𝑐𝑜𝑑𝑒}. shen-
longip.com, In this case, RESIPs in different cities will be mapped
to different subdomains. Leveraging passive DNS provided by our
industry collaborator, we can not only identify all the up-to-date
direct RESIPS offered through DNS, but extract all historical RE-
SIP IPs. For the first time, this will allow us to carry out a tem-
poral analysis of the RESIP ecosystem across years. Still, to dis-
tinguish from RESIPS of other categories, we define DP-RESIPs as
RESIPs collected through passive DNS. To extensively identify ser-
vices offering DP-RESIPs, we manually visited websites of all Chi-
nese RESIP services, went through their integration documents,
and verified whether direct RESIPs are available and whether they
are provided through DNS. In total, 42 Chinese RESIP services are
identified to offer DP-RESIPs. Also, similar to DA-RESIPs, we have
verified most active DP-RESIPs are authentic ones that can relay
traffic during their RESIP lifetime.

Leveraging the aforementioned two channels, we have captured
2,283,665 DA-RESIPs across three providers, as well as 1,471,361
DP-RESIPS covering 42 providers. Detailed measurements will be
presented in §4 and §5 with a focus on their landscape, evolution,
and potential security risks.

3.4 Datasets and Ethical Considerations
Beforemoving tomeasurements, we summarize available datasets

among which some are generated by this study while others are
either released by previous works or collected from external plat-
forms. Furthermore, we will also summarize our ethical consider-
ations.

RESIP services and RESIP IPs. Our RESIP service classifier have
identified 359 RESIP services in either English or Chinese. Also,
[25] has released a list of 5 RESIP services which are manually
crafted and were active in 2017. Furthermore, [26] extends this
dataset with 38 more services identified semi-automatically. These
datasets will be used to profile the evolution of RESIP services
across time, as detailed in §4. Two main datasets of RESIPs are
available. One was captured by [25] in 2017 and we name it as
RESIP-2017. The other (RESIP-2019) was collected in 2019 in [26].
In our study, we have identified millions of RESIPs in three cate-
gories. One is backconnect RESIPs. The other two are direct RE-
SIPs collected from either service-specific APIs or passive DNS. A
direct comparison among these datasets has been carried out and
detailed results will be presented in §4.

IP WHOIS and IP threat intelligence datasets. IP WHOIS database
contains information on assignees (owners) of IP addresses. Such

information usually includes the assignee’s name and type, the ge-
olocation of the IP addresses in terms of country and city, as well
as the contact information of the assignees. In our study, we utilize
IPinfo [19], a popular IP intelligence service, to extract up-to-date
IP WHOIS information, so as to measure the landscape and distri-
bution of RESIPs.

To extensively profile RESIPs, we have got access to two pub-
licly available IP threat datasets. One is VirusTotal, awell-recognized
open threat intelligence platform, which aggregates malicious ac-
tivities of extensive categories for various entities (e.g., files, IP
addresses, domains, and URLs). Therefore, it is commonly used
in security investigation and research. In our study, we queried
VirusTotal with captured RESIP IPs for their maliciousness reports.
These reports are used to profile malicious activities of RESIP IPs
if any, as detailed in §5. The other dataset is offered by AIWEN
Tech 3, a company dedicated to profiling IP addresses. Although
sharing a set of common attributes with IPinfo’s IP dataset, AI-
WEN’s dataset adds extra values since it allows us to learn more
for IPs located in China, e.g., the more fine-grained geolocation in-
formation, and what threat labels an IP has been assigned with.
More details about this dataset and our measurement results facil-
itated by this dataset will be presented in §4 and §5. In addition
to the two publicly available IP threat intelligent datasets, we have
also got access to a proprietary threat intelligence platform oper-
ated by our industry partner, one of the top security companies
in China. Leveraging detection systems deployed national-wide in
China, this platform has aggregated fine-grained malicious traffic
flows (MTFs) across a long period. In addition to the five-tuple,
each MTF is also assigned with multiple valuable attributes such
as the malicious categories, the timestamp, etc. Similar to Virus-
Total, we queried this platform with the same set of RESIPs and
utilized the resulting reports to profile malicious activities involv-
ing RESIP IPs as the clients. Still, the detailed analysis results will
be presented in §5.

Passive DNS. In our study, passive DNS plays a critical role,
especially when capturing direct RESIPs and measuring evolution
of RESIP services. The passive DNS dataset adopted in our study
comes from the aforementioned industry collaborator. To collect
passive DNS records, our industry collaborator deploys sensors
on DNS resolvers widely distributed in China. And its DNS sen-
sors can observe an daily average of 600-billion DNS queries and
responses, with the resulting passive DNS dataset covering 800-
million unique domain names and 70-million unique IP addresses.
Ethical considerations. In our study, we have tried our best
efforts to avoid any ethical issues when collecting and measur-
ing research data. Specifically, before querying search engines for
RESIP-relevant webpages, we looked into their crawling policies,
and confirmed at our best judgement that our queries would not
violate their policies. Also, when visiting RESIP-relevant websites,
we limited our scraping scope to only in-site webpages that are re-
ferred directly or indirectly by the website landing page, and for
each webpage, we crawled only once. Therefore, we believe our
crawling should not have incurred any non-negligible overhead to
the respective web servers. Besides, when capturing backconnect
RESIPs, we sent, for each RESIP node, very few number of HTTP

3https://en.ipplus360.com/home/
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Table 3: Distribution of RESIP IPs in different groups.

Group IPs /16 IPv4 /8 IPv4 AS Countries ISPs

BC1 8.18M 27.4K 203 24.9K 227 49.8K
F-BC1 4.45M 26.4K 203 24.8K 227 49.6K
NF-BC2 3.72M 1.2K 48 17 19 272
DA2 2.28M 969 49 20 20 331
DP2 1.47M 2.3K 110 149 31 671
China 4.66M 3.2K 122 319 N/A 1.1K
All 9.08M 28.4K 208 24.9K 227 50.3K

1 BC denotes backconnect RESIPs, F-BC are backconnect RESIPs cap-
tured from service Fanqie, while NF-BC are backconnect RESIPs from
services except for Fanqie.
2 DA denotes direct RESIPs observed from services’ APIs while DP de-
notes direct RESIPs observed from passive DNS.

probes and each probe is well crafted with a small size. And we be-
lieve our infiltration shouldn’t add any non-negligible traffic pres-
sure on the RESIP devices. Also, to the best of our judgement, our
industry partner collects their passive DNS dataset and threat in-
telligent dataset in an ethical manner, as learned from our detailed
communication on this issue.

4 Ecosystem
Upon RESIP services and RESIP IPs of different categories, we

move to characterize the RESIP ecosystem in this section. We start
by measuring landscape and usage of RESIPs along with a direct
comparison with previous RESIP datasets, as detailed in §4.1. Fol-
lowed is §4.2 wherein we explore the potential correlations among
groups of RESIPs as well as the connections among various RE-
SIP services. Also, leveraging DP-RESIPs, we are allowed to profile
the temporal evolution of the RESIP ecosystem which has distilled
several interesting findings.

4.1 Landscape and Usage
As described in our methodology (§3.2), captured RESIP IPs can

be grouped into three categories, depending on how theywere cap-
tured. One is backconnect RESIPs (BC-RESIPs) captured through
infiltration traffic. Then, it is direct RESIPs captured by means of
querying either provider-specific web APIs or passive DNS. And
they are either named as DA-RESIPs when captured through APIs
or DP-RESIPs when captured from passive DNS. Next, let’s take a
closer look into RESIPs of these subcategories.
Backconnect RESIPs (BC-RESIPs). Through a 6-month infiltra-
tion on 5 proxy providers, we have captured 8.18-million unique
backconnect RESIP IPs (BC-RESIP IPs) through 169-million suc-
cessful probes. Table 2 provides more details in terms of provider-
specific contribution and the infiltration period.We thenmeasured
the distribution of BC-RESIP IPs in the geographic space and the
network space, as listed in Table 3. These BC-RESIP IPs are widely
distributed in 227 countries, 34,022 cities, 49,849 ISPs, and 203 /8
IPv4 prefixes. Such a wide distribution is a little surprising con-
sidering the involved 5 RESIP services are dedicated to serving
customers in the China market. Further study reveals that Fanqie,
one of the 5 services, contributes majority of non-China RESIP IPs,
while the left 4 services have 99.90% of their BC-RESIP IPs located
in China. This is further verified by looking into the fine-grained
country distributionwherein a long-tailed pattern is observedwith
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(a) The global distribution of BC-RESIP
IPs.
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(b) Distribution of RESIP IPs in China.

Figure 2: Heatmaps to profile distribution of RESIP IPs in
the geographic space.

top 5 countries accounting for 70% of all most BC-RESIP IPs: China
(46.07%), the United States (20.73%), Great Britain(4.90%), Russian
(2.92%), and India (1.57%). Figure 2(a) profiles the distribution of
BC-RESIP IPs across countries by means of a heatmap, which is
aligned with aforementioned data points. Similar to countries, a
similar long-tailed distribution is also observed for BC-RESIP IPs
when measured against network blocks and ISPs.
Direct RESIPs. In addition to backconnect RESIP IPs, we have
also collected 3,240,550 direct RESIP IPs in total. Among these di-
rect RESIPs, 2,283,665 were collected by querying APIs offered by 3
providers (XiaoXiang, PinYiYun and JiGuang), and 1,471,361 were
collected through looking up passive DNS records of 42 providers,
e.g., shenlongip.com. Regardless of sources, these direct RESIP IPs
share a similar distributionwith non-Fanqie BC-RESIPs. Especially,
99.76% of direct RESIPs are located in China, and 3,240,547 are reg-
istered under 819 ISPs as revealed by IPinfo [19].
China RESIP IPs. Since the main focus of our study is RESIPs in
China. It is thus worthwhile to move the spotlight closer to RESIPs
located in China. Among all the 9.08 millions of RESIPs, 51.36% are
located in China. These China RESIPs are collected from 47 proxy
providers with the top 5 proxy providers being PinYiYun (67.43%),
JiGuang(44.74%), XiaoXiang(32.63%), and IPIDEA(29.47%), yunip-
168.com(4.09%) . Also, regarding network-wide distribution, China
RESIP IPs have amuch narrower distribution in the network space,
compared to non-China ones. 99.17% China RESIP IPs are densely
converged into 40 /8 IPv4 network blocks, and 88.42% are regis-
tered under 50 ISPs. Figure 2(b) profiles, by means of a heatmap,
the fine-grained distribution of RESIP IPs in provinces of China.
And we can see a wide coverage of all the 34 provinces. Still, a
long-tailed distribution is observed with top 5 provinces have con-
tributed 80.56% of all direct RESIPs in China: Zhejiang (35.97%), Bei-
jing (13.08%), Jiangsu (11.98%), Fujian (10.31%), and Sichuan (9.22%).
All RESIPs. In total, we have collected 9,077,278 unique RESIP IPs.
And these RESIP IPs are widely distributed across 227 countries
and regions, 28,441 /16 IPv4 CIDRs, and 50,344 ISPs, as listed in
Table 3. Among these RESIP IPs, 8,176,522 are backconnect RESIPs
as observed by our multi-month infiltration, while 3,240,550 are
direct ones which were extracted from provider-specific APIs as
well as passive DNS datasets. The overlap of 2,339,794 RESIP IPs
between backconnect and direction subsets means that some IP
addresses used to serve as both.
Finding I:More than 9-million RESIP IPs have been observed in our
study, constituting the largest RESIP dataset with a global distribu-
tion across 200+ countries and regions, and 50K+ ISPs.
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Table 4: Statistics of the top 10 RESIP services with most di-
rect RESIPs observed through passive DNS.

Provider FQDNs1 RESIPs Lifetime2 Total Usage Daily Usage

yunip168.com 636 191K 1,637 761M 465K
shenlongip.com 816 181K 948 1.33B 1.41M
yunip520.com 468 152K 572 945M 1.65M
vpsnb.com 1,668 134K 1,948 1.15B 590K

jtip.in 888 132K 935 258M 276K
xunyoull.com 1,152 102K 491 351M 715K

91ip.vip 358 102K 1,275 849M 666K
upaix.cn 2,725 96K 1,863 324M 174K

ipduoduo.cc 309 90K 2,061 1.34B 648K
jyip.net 2,346 80K 1,792 819M 457K

1 FQDN denotes fully qualified domains names of the respective RESIP service that
are resolved to RESIPs.
2 denotes lifetime in days the respective RESIP service in days.

A comparison with previous RESIP IP datasets. We also com-
pare our RESIP IP dataset with two public available ones as re-
leased by previous works. One (RESIP-2017 ) was collected during
2017 by [25] through infiltrating 5 RESIP services popular at that
time, while the other (RESIP-2019) was retrieved from 9 RESIP ser-
vices in 2019 by [26]. Despite targeting regional RESIP services
in China, our dataset (9,077,278 RESIP IPs in total) is even larger
than either of them. Also, RESIP IPs in our dataset has a global-
wide distribution that is comparable to previous datasets, in terms
of countries, autonomous systems, and ISPs. Besides, only a small
overlap of RESIP IPs is observed between our dataset and the pre-
vious ones, with only 299,470 RESIP IPs (3.30% of our dataset) in
our dataset having ever been captured by one of the previous two
datasets. More importantly, our dataset has captured 4,661,934
China RESIPs, which ismuch larger than ones captured in previous
works (148,241 in RESIP-2017 and 183,341 in RESIP-2019). In sum-
mary, our dataset of RESIP IPs has added extra values compared to
previous datasets in at least two aspects. One is that it can fresh our
understanding of the global-wide RESIP ecosystem with 8,777,808
globally distributed RESIP IPs never captured before. More impor-
tantly, It allows us to achieve a fine-grained characterization of the
RESIP ecosystem in China, which has been missed by all previous
works.
Finding II: 96.70% RESIPs in our dataset have never been observed
in previous datasets, and 4.6-million China RESIPs are observed
while it is only 148K in REISP-2017 and 183K in RESIP-2019.

Usage. Given such a large scale of RESIP IPs identified, it is intu-
itive to wonder to what extent they have been used for traffic relay-
ing. However, it is challenging to evaluate the usage volume of RE-
SIPs without being an insider of RESIP services. To our best knowl-
edge, no previous works have ever answered this question. As dis-
cussed above, many RESIP services bind RESIP IPs to their subdo-
mains through DNS. By looking up passive DNS (pDNS), we have
identified 3,635,698 relevant pDNS records and captured 1,471,361
direct RESIP IPs as the result. In addition to the mapping between a
RESIP IP and a service subdomain, each of these pDNS record also
contains the aggregated DNS query volume. We then utilize such
DNS query volume to approximate the usage volume of RESIPs.
It turns out the captured DP-RESIPs have received 16-billion DNS
queries in total between 2015-06-01 and 2022-01-03. Note that, our
passive DNS dataset has a limited coverage and it may not cover all
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Figure 3:TheCDFs ofDP-RESIPs of top 10 services over their
service-specific lifetime in days.

DNS queries on RESIPs. Also, not every relaying request will trig-
ger a DNS query, due to the hierarchical DNS caches. Therefore,
the number of 16 billions should be considered as a lower-bound
for the usage volume of RESIPs. Table 4 also presents the service-
specific usage metrics of the top 10 RESIP services offering the
largest number of DP-RESIP IPs. We can observe from Table 4 that
RESIPs are being used frequently. Also, a service with more RE-
SIPs observed doesn’t necessarily mean it has a higher usage vol-
ume, and RESIP services of a similar scale can have very different
usage volumes, as shown in the case of yunip168.com and shen-
longip.com. Although shenlongip.com has almost the same number
of RESIPs and a much shorter lifetime compared to yunip168.com,
it has a usage volume of 1.3 billions which is almost two times as
much as that of yunip168.com. Also,the daily usage volume of shen-
longip.com is around 1.41 millions, the largest among all the top 10
services except yunip520.com

4.2 Correlation, Lifetime, and Evolution
Correlations among RESIP services. We first explore the rela-
tion between direct and backconnect RESIPs. Among RESIP ser-
vices under our study, PinYiYun, JiGuang and XiaoXiang provide
both direct and backconnect RESIPs. It turns out that direct RESIPs
and backconnect RESIPs of the same service can share a large in-
tersection. Specifically, for RESIP service PinYiYun, its direct RE-
SIP pool (1,277,389 RESIPs) has an overlap of 1,113,872 with the
backconnect proxy pool (2,983,867 RESIP IPs), which accounts for
a large portion for both pools. A similar result is also observed for
RESIP service JiGuang with the overlap constituting 78.95% of the
direct pool and 77.16% of the backconnect pool. In summary, a RE-
SIP service can expose the same RESIP as both backconnect and
direct.

In addition, strong correlations among proxy providers have
also be observed in our study. Specifically, we profile the relation
between pairs of RESIP services (e.g., a pair of (𝐴, 𝐵)), by calcu-
lating the intersection rates of their RESIP IPs: |𝑅𝐸𝑆𝐼𝑃𝐴∩𝑅𝐸𝑆𝐼𝑃𝐵 |

|𝑅𝐸𝑆𝐼𝑃𝐴 |
and |𝑅𝐸𝑆𝐼𝑃𝐴∩𝑅𝐸𝑆𝐼𝑃𝐵 |

|𝑅𝐸𝑆𝐼𝑃𝐵 | . Among the studied RESIP services, pairs of
(PinYiYun,IPIDEA) , (PinYiYun, JiGuang) and (JiGuang,PinYiYun)
have shown up high intersection rate with each other. We fur-
ther investigated their correlations by communicating with their
respective customer services, which reveals that PinYiYun, JiGuang,
and IPIDEA are controlled by the same underlying operator.
Service-specific lifetime of RESIPs. Among identified RESIP
services, 42 RESIPs services offer direct RESIPs through dynami-
cally resolving their subdomains to RESIP IPs. Leveraging passive
DNS, we are able to learn for a DP-RESIP IP the time frame from
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Figure 4: Daily activeDP-RESIPs across time for top services.

when it shows up as an RESIP to when it disappears from the RE-
SIP pool, in another word, the service-specific lifetime of any given
DP-RESIP. Specifically, a pDNS record will contain the active pe-
riod between the first time and the last time that the DNS record is
observed. Combining all these time frames will get us the lifetime
of a RESIP for a specific service. Figure 3 presents such cumula-
tive distribution of RESIPs against their service-specific lifetime in
days. And we can see most DP-RESIPs (around 91%) have a short
lifetime of less than 10 days, regardless of the services. Further, at
least of 53% RESIPs have a service-specific lifetime as short as only
one day. Although Figure 3 covers only top 10 services, the obser-
vations of short lifetime is verified to be consistent across all the
42 RESIP services providing DP-RESIPs. This observation of short
lifetime further highlights that RESIPs are distinct from traditional
network proxies which tend to have a much longer proxy lifetime.
Considering the large volume of direct RESIPs as well as the large
overlap between backconnect and direct RESIPs, we believe the
lifetime characteristics of DP-RESIPs can also apply to all RESIPs.
Such a high churning rate of RESIPs has important security impli-
cations. Particularly, it may invalidate manywell-adopted network
defense techniques such as various IP blocklists, since a blocked
RESIP IP will quickly be expired and attackers can easily migrate
to new and clean RESIPs.
Finding III: RESIPs tend to have a short lifetime and 53% RESIPs
emerge and disappear within 24 hours.

Evolution of RESIP services. Similarly, passive DNS allows us
to measure evolution of RESIP services in terms of the scale of
their RESIP pool across time. Figure 4 presents the daily active DP-
RESIPs for top 10 services between 2016-05-14 and 2022-01-03. A
RESIP is considered as active on a specific date when at least one
DNS records are observed on the same date to map this RESIP to
a subdomain of the respective service. And we can see an obvi-
ous crest-trough pattern for most of these services. Also observed
is the intensive increase of active RESIPs across all providers dur-
ing 2020. Besides,it usually takes 3 years on average for a RESIP
service to increase its RESIPs until arriving at the crest, in another
word, gaining the maximum number of RESIPs. On the other hand,
a RESIP service can collapse quickly in less than 129 days from the
crest to the trough. As shown in Figure 4, all top 10 services offer-
ing DP-RESIPs have their scale of RESIPs dropped to the bottom
in late 2021 and early 2022. We double checked this issue and have
confirmed it is not due to any errors in data collecting and process-
ing. An explanation we identified is that it may be subject to the
crackdown of domestic crypto mining activities as conducted by
the China government. China initiated this crackdown campaign
in May 2021 [10], and further declared any cryptocurrency-related

Table 5: Statistics of RESIP’s malicious traffic flows as re-
vealed by the proprietary threat platform.

RESIP Group w MTFs1 ≥ 5 MTFs 2 ≥ 10 MTFs
China 80.05% 68.06% 58.79%

Non-China 0.28% 0.11% 0.08%
1 denotes the ratio of RESIPs with malicious traffic
flows (MTFs) observed.
2 denotes the portion of RESIPs with each havingmore
than 5 MTFs identified.

activities as illegal in Sep 2021 [11]. As detailed later in §5, 62.61%
RESIPs have cryptojacking activities identified during 2021 and the
crackdown of cryptojacking facilities and activities may have also
suppressed the co-located RESIP business.

5 Security Risks
5.1 Co-Located Malicious Activities

To profile maliciousness of RESIPs, we seek help from several
threat intelligence platforms, as introduced in §3.4. One is Virus-
Total, a global and publicly available open threat intelligence plat-
form, while the other is a proprietary one maintained by a security
company dedicated to threat intelligence in China. Since the main
focus of our paper is to profile the RESIP ecosystem in China, we
first randomly sample 1M from RESIP IPs that are located in China
and are active during 2021. Further, we randomly sample another
1M from all non-China RESIP IPs that are active during 2021, aim-
ing to gain a global-wide understanding of RESIP’s maliciousness
as well as a direct comparison with previous works [25, 26]. For
each RESIP IP in either group, we query both platforms for its
threat reports if any.

We also observe that the aforementioned two threat platforms
have different advantages in terms of profiling malicious activi-
ties relevant to a given IP. Specifically, VirusTotal focuses more on
how an IP acts as a server in malicious activities, such as hosting
malware or phishing websites. On the contrary, the private threat
platform is found to be very helpful to profile how an IP involves in
malicious activities as a client, such as being a bot due to compro-
mise. Therefore, we present separately the maliciousness results
revealed by these two platforms.

Finding IV: At least 80% China RESIP IPs have been involved in
malicious traffic, while it is only 0.28% for non-China RESIPs.

We first look into malicious traces of RESIPS as learned from
the proprietary threat intelligence platform. As shown in Table 5,
80.05% China RESIP IPs have involved in at least one malicious
traffic flows (MTFs) during 2021. When increasing the threshold of
MTFs, a large volume of China RESIPs are still there, e.g., 68.06%
have involved in at least 5 MTFs and 58.79% are of at least 10 MTFs.
Contrary to China RESIPs, very few malicious traces have been
observed on non-China RESIPs by the proprietary platform, with
only 0.28% non-China RESIPs associated with MTFs. This is likely
due to this platform’s dedication to cyber threats in China.

We then take a closer look into categories of the malicious traf-
fic flows. Table 7 presents topmalicious categories along with their
contribution of MTFs and the involved RESIPs. The most common
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Table 6: Statistics of RESIP’s malicious activities as captured
by VirusTotal:Mal denotes malicious.

RESIP Group W Reports Mal W Mal URLs W Malware

China 55.98% 1.26% 1.25% 0.33%
Non-China 45.54% 1.42% 1.41% 0.05%

Table 7: Top 5 categories of malicious activities involving
China RESIPs.

Malicious Category MTFs % MTFs RESIPs % RESIPs

CryptoMining 22.8M 44.03% 626,120 62.61%
Remote control Trojan 13.1M 25.32% 569,140 56.91%

Worm 10.4M 20.05% 207,577 20.76%
Botnet 2.4M 4.65% 210,017 21.00%

Rogue promotion 2.0M 3.93% 43,217 4.32%

MTFs denotes malicious traffic flows.

malicious category is CryptoMining which have involved 62.61%
RESIP IPs during 2021. Also, 11 different CryptoMining campaigns
have been identified, e.g., MiningPool accounts for 27.27% mali-
cious traffic flows and 35.13% RESIP IPs，and Minerd accounts
for 16.56% malicious traffic flows and 48.30% RESIP IPs. Further-
more, among RESIPs involved inMiningPool activities, around 50%
were alarmed due to communications with sim.jiovt.com, a mining
pool domain name that is exclusively used by a cryptomining bot-
net named MsraMiner [12]. Similarly, among MTFs regarded as
Minerd, 72% are associated with ait.pilutce.com which turns out
to be the mining server of a cryptojacking campaign called Wan-
naMine [46, 47]. The second most popular malicious category is
the remote control trojan , which involves 56.91% of RESIP IPs in
China and accounts for 25.32% MTFs.
Finding V: Among China RESIPs, 63% have ever involved in ma-
licious cryptocurrency mining, 57% are observed in remote control
trojan activities, and 21% have ever participated in botnet activities.

We also queried Virustotal [45] with the aforementioned two
groups of 1-million RESIP IPs. A VirusTotal analysis report for a
given IP will include themalicious URLs the IP have ever hosted, as
well as the set of malware an IP has associated with. And there are
three types of associations between an IP and a malware. One is
embedding wherein the IP is embedded in the payload for a given
malware. The second is communicating which denotes that a mal-
ware has ever communicated with the given IP.The third associate
type is hosting whichmeans the IP is found to have ever hosted the
given malware for downloading. Among these three association
categories, embedding and communicating are weak indicators to
judge maliciousness of an RESIP IP. Instead, hosting malware is
commonly recognized as a strong maliciousness indicator. There-
fore, we exclude the weak indicators when analyzing VirusTotal
reports, and an IP is considered as malicious only when it hosts
either malicious URLs or malware.

Table 6 shows the threat statistics revealed by VirsuTotal for
the two groups of randomly sampled RESIP IPs. Regardless of the
RESIP group, a low rate of maliciousness is observed with only
1.26% China RESIPs and 1.42% non-China RESIPs reported as ma-
licious, due to hosting either malware or malicious URLs. This low

maliciousness ratio is consistent with previous works, e.g., [26] re-
ports a maliciousness rate of 0.44% for RESIP IPs in cellular net-
works by querying VirusTotal. Despite having a similar overall
maliciousness rate, a higher ratio of China RESIPs (0.33%) have
associated with malware hosting, compared to non-China RESIPs
(0.05%). We also take a closer look into malware or malicious URLs
that are associatedwith RESIPS.We first analyze the categories and
real-world cases of malicious URLs. Among China RESIPs, 1.25%
have associated with at least one malicious URLs and these URLs
are grouped by VirusTotal as three malicious categories: malware,
phishing, and the general malicious. Note that an URL can be attrib-
uted with multiple categories. Among the unique 29,210 malicious
URLs associated with the sampled China RESIPs, 0.40% have been
labelled as phishing, 57.30% are considered as malware, and 93.89%
are attributed as general malicious. Also,These URLs belong to 307
FQDNs and 120 apex domains, and top 20 apex domains account
for most malicious URLs. We also manually studied top 20 apex
domains and find that 15 of them are dynamic DNS services which
are commonly used in web hosting at home, which also aligns with
previous works. Compared to China RESIPs, a similar amount of
malicious URLs are observed for non-China RESIPs.

Across China and non-China RESIPs, we have observed a large
volume of URLs of the botnetMozi. Specifically, 3,129 (0.32%) China
RESIPS and 474 (0.05%) non-China IPs are found to have ever hosted
Mozi payloads and facilitated Mozi infections. Mozi is a peer-to-
peer botnet implemented upon the distributed hash table (DHT) [1,
4], which emerged in recent years following in the footsteps of
many predecessors such as Mirai. RESIPs involving in the Mozi
botnet were found to have started a http server at a randomly se-
lected port and hosted a payload download URL in the pattern of
http://ip:port/mozi.a or http://ip:port/mozi.m wherein mozi.a and
mozi.m are the names of Mozi’s propagation samples. For instance,
122.236.213.82, an RESIP IP located in Shaoxing, China, has ever
hosted 12 urls for Mozi payload propagation, e.g., http://122.236.
213.82:50232/Mozi.a, http://mailto:info@122.236.213.82:50232/Mozi.
m , and http://drolukse.rokz@122.236.213.82:50232/Mozi.m.

Finding VI: 3,129 China RESIP IPs are observed to have ever hosted
and distributed the infection payloads of Mozi, an emerging IoT bot-
net family.

In essence, the colocation of RESIPs with various malicious ac-
tivities and malware families has a strong security implications.
On one hand, it can be explained that some RESIPs are harvested
throughmalware campaigns especially botnets. On the other hand,
even if RESIPs are benign, co-location with malicious programs
on the same IP or even on the same device is concerning since
co-located malware may be able to compromise integrity and con-
fidentiality of any traffic relayed through the RESIPs. We leave it
as our future work to further solidify the potential connections be-
tween various malware families and RESIPs.

5.2 Risks to the Local Networks
As revealed by previous studies, backconnect RESIPs execute by

setting up one ormore persistent TCP connectionswith the service
gateways, and most backconnect RESIPs run as regular programs
without privileged permissions. However, unlike backconnect RE-
SIPs, direct RESIP programswill accept incoming relaying requests
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through listening to TCP/UDP ports of public IP addresses. For in-
stance, PinYiYun’s 1,275,547 direct China RESIPs all open and lis-
ten to TCP port 62456 while 53.15% XiaoXiang’s direct China RE-
SIPs have TCP port of 3000 opened for proxy traffic, as learned
from online documents of these RESIP services. What is concern-
ing is that the TCP/UDP ports opened for RESIPs can unfortunately
serve as loopholes for miscreants to carry out remote attacks.

Another risk resides in the fact that sensitive organizations are
found to have ever hosted RESIPs in their networks. Specifically,
AIWEN’s IP dataset contains fine-gained owner information for
IPs located in China and thus allows us to extract for each China
RESIP IP, its respective organization information. Here, we limit
our scope to several sensitive organization types including gov-
ernments, enterprises, and education institutions. Specifically, 559
sensitive organizations are verified to have contributed 3,751 to
the sampled 1M China RESIP IPs. Considering ethical issues and
potential security risks, We decide not to reveal these organiza-
tions. We then carried out a responsible disclosure for the afore-
mentioned 559 sensitive organizations, of which each has at least
one RESIP IPs identified in their organization networks. This re-
sponsible disclosure was started by collecting organizations’ con-
tact information from various sources including IP Whois, their
public websites, etc. In total, we have successfully identified at least
one email address for 318 out of 559 RESIP-relevant sensitive orga-
nizations. We then sent out emails for each of them to disclose our
findings related to each org as well as illustrating our research con-
text. Also, multiple rounds of communicationmay be carried out to
exchange more details until a concrete and deterministic response
is received. By this paper submission, we have got final response
from 11 out of 318 organizations, and are still communicating with,
or are waiting for initial response from the left. Among these 11 or-
ganizations, 8 responded that the respective RESIPs don’t belong
to their networks, 1 replied that it accesses the Internet through
dynamic IP addresses and thus shares IP addresses with residen-
tial users, while the left two education institutions acknowledged
that it may be due to subscriptions of Internet access services by
local residents that are located in their campuses. We will continue
our communication with the left and will update this paper once
more concrete responses are received.

Finding VII: 3,232,698 China RESIP IPs have exposed at least one
TCP/UDP ports to serve proxy traffic, while 3,751 China RESIPs are
found to be likely located in 559 sensitive organizations including
159 education instituions, 156 goverment agencies, and 244 compa-
nies, all of which incur non-negligible security concerns.

5.3 The Supply Chain of RESIPs
Given such a large volume of China RESIPs observed, it is worth-

while to explore the underlying supply chain, in another word,
what channels are utilized by RESIP services to harvest RESIPs.

We first observe that many IPv4 /24 or even /16 network blocks
are densely populated with China RESIPs. Specifically, 3,128 IPv4
/24 prefixes have all their child IP addresses observed as RESIPs
while 10 IPv4 /16 prefixes have more than 30% of their child IPs
observed as RESIPs. Such a dense distribution of China RESIPs is
different from the global RESIPs revealed in previous studies. For
instance, only 5 IPv4 /24 prefixes in RESIP-2017 are fully populated

with RESIPs while it is only 86 in RESIP-2019. It makes us wonder
whether China RESIP services have utilized any tools or services
to quickly migrate their proxy nodes across IP addresses. A further
investigation reveals that residential IPs may have been harvested
by RESIP services through purchasing virtual private servers (VPS)
from a special cloud computing service.

We name these special cloud computing services as Switch IP
in Seconds (SIPS) since they offer a special kind of virtual private
servers (VPS) that allow the customers to switch to a new resi-
dential IP in a quick and efficient manner. This is achieved by de-
ploying each SIPS VPS in a residential building and configuring
the VPS’s internet access through subscribing to an ADSL service.
Once an SIPS VPS is deployed, it can quickly migrate to an new IP
address by repeating the logout and login operations for the sub-
scribedADSL service. Example SIPS services includewww.plaidc.com,
vpsnb.com, and jtip.in. One thing to note, the range of IPs that a
SIPS VPS can attach to is not limited to its physical location. In-
stead, by means of various VPN technologies, most SIPS services
allow a VPS to quickly migrate to any national-wide residential IP
range as long as there is another VPS deployed in the respective IP
range. Here we consider an IP address as a SIPS IP if it used to be
attached to a SIPS VPS.

To further evaluate the extent to which such SIPS services have
been used to provision RESIPs, we queried AIWEN’s IP threat pro-
filing dataset to decide whether a RESIP IP used to be allocated to
a SIPS VPS or not. This is made possible thanks to the fact that AI-
WEN’s IP threat dataset has a threat label to denote whether an IP
address used to serve an SIPS VPS. Given the limited access granted
by AIWEN, we sampled 30,000 China RESIP IPs and queried this
threat dataset. As a result, 20,290 (67.63%) are labelled as SIPS IPs,
which strongly indicates that SIPS services play an important role
in the supply chain of RESIPs. We leave it as our future work to
further profile SIPS services and their security implications.

Finding VIII: Many China RESIPs are likely harvested by means
of SIPS (switch IP in seconds) services, and SIPS services offer virtual
private servers that are deployed in residential networks along with
the capability of quickly migrating to new residential IPs.

6 Discussion
China RESIPs versus non-China RESIPs. Given our study’s
main focus is China RESIPs, we further discuss the unique charac-
teristics of China RESIPs when compared with non-China RESIPs.
Firstly, many China RESIPs have a denser distribution in the net-
work space. Particularly, 3,128 /24 IPv4 prefixes have all of their
child IPs serving as China RESIPs, and 10 /16 IPv4 prefixes have
more than 30% of their IPs serving as China RESIPs. Differently,
most non-China RESIPs have a more sparse distribution across net-
work blocks. Even when combining non-China RESIPs collected in
our dataset with ones from RESIP-2017 and RESIP-2019, only 111
/24 IPv4 prefixes are filled up with non-China RESIPs and 4 /16
IPv4 prefixes have more than 30% IPs serving as RESIPs.

Also, China RESIPs impose either previously unknown or higher
security risks, compared to non-China RESIPs. Different from non-
China RESIPs that usually serve in a backconnect mode, more than
3,232,698 China RESIPs work in a direct mode by binding to spe-
cific TCP/UDP ports and accepting external proxy traffic, which
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will punch a hole directly into the local networks wherein RE-
SIP devices reside. Apparently, this can incur higher security risks
compared to traditional backconnect RESIPs. Besides, the supply
chain of China RESIPs looks much different from their non-China
counterparts. As detailed in §5.3, RESIPs in China are likely har-
vested through SIPS (Switch IP in Seconds) services, which are
increasingly considered as illegal along with companies offering
such services hit hard by local law enforcement agencies [39]. Dif-
ferently, as reported in [26] and [25], non-China RESIPs are har-
vested through distributing either proxy programs or proxy SDKs
to residential devices, e.g., mobile phones and computers. These
SIPS services provide a more efficient and convenient channel for
RESIP operators to harvest residential IP resources, which raises
the alarm for traditional IP-based network defense mechanisms.
Also, as revealed by our industry partner’s threat intelligent data,
80.05% China RESIPs have involved in various malicious activities
especially cryptojacking and botnets, while it is only 0.28% for non-
China RESIPs. Although such a big gap can be partially attributed
to our partner’s dedication to threat hunting in China, it strongly
suggests the unique threat property of China RESIPs when com-
pared with non-China ones.
Novel contributions. Mi, et al. [25, 26] profiled the global RE-
SIP ecosystem with millions of RESIP IPs uncovered, hundreds of
RESIP programs identified on Android andWindows platforms, as
well as multiple security risks revealed. Compared to these pre-
vious works, our novel contributions can be summarized as be-
low. First of all, we have captured more RESIP services, as well
as more RESIP IPs of more categories. Particularly, we have cap-
tured 4,661,934 China RESIP IPs, which is much larger than previ-
ous works among which only 148,241 China RESIPs were captured
in [25] and 183,341 were observed in [26]. More importantly, we
have identified 3,240,550 direct RESIPs while all RESIPs captured
in previous works are of the backconnect type. As discussed above,
direct RESIPs can incur higher security risks to RESIP devices and
their local network environments. Besides, leveraging our RESIP
service classifier, we have identified 399 RESIP service websites,
which is much larger than the 38 revealed in previous works.

Also, more security risks are uncovered in our study. Specifi-
cally, a large portion of China RESIP IPs are found to have in-
volved in malicious network traffic especially cryptojacking and
botnets. Also, it turns out that many RESIPs either share public
IP addresses with or are located inside many organizations, which
leads to non-negligible security risks to the involved organizations.
Furthermore,manyChina RESIP IPs (68%) are likely harvested trough
SIPS services and tools, a supply chain of RESIPs which has never
been revealed before, to the best of our knowledge.

Besides, our study has alsomade several technical contributions.
Specifically, we have built up an effective RESIP website classifier
along with a set of keyword-based novel features. Also, a pipeline
of collecting direct RESIPs by looking up passive DNS is designed
and implemented, which can avoid the costly and time-consuming
traffic infiltration when hunting RESIPs.
RESIPs versus other network proxies. One thing to note, RE-
SIPs don’t introduce or deploy any newnetwork protocols. Instead,
a RESIP usually shares the same set of well-defined proxy protocols
with other kinds of proxies. For instance, similar to commercial
VPN services, many direct RESIPs are found to have support for

well-adopted VPN protocols such as PPTP and L2TP, which also
explains why some RESIP services call their RESIPs as residential
VPNs. However, RESIPs indeed have several unique characteristics
when compared to other well-known network proxies, especially
VPNs and the Tor network. Particularly, RESIP services usually
have millions of exit nodes (RESIPs), which are far more than that
of traditional proxy services, e.g., VPN services. Furthermore, tradi-
tional proxy services usually deploy their servers and exit nodes on
data center networks while REISPs are located in home networks
or cellular networks, which gives RESIPs incomparable advantages
in terms of anonymizing or masquerading relayed traffic.
Limitations. There are still chances that passive DNS can be pol-
luted with fake RESIP-relevant records, which will introduce fake
direct RESIPs into our dataset. However, we argue that there are
few motivations for such kinds of pollution and it would be chal-
lenging to pollute passive DNS at a large scale and across a long
time. Therefore, we believe the noise in our DP-RESIP dataset can
be negligible. Another limitation of our study resides in our RESIP
service classifier, which may miss RESIP services for various cor-
ner scenarios as discussed in §3.1. We leave it as our future work
to further improve this classifier.
Future works. One future work is to dive deeper into the supply
chain of RESIPs, especially to understand the extent to which the
RESIP ecosystem is abused by miscreants to monetize their ma-
licious campaigns. Also, as revealed in this study, a RESIP service
may not have a global visibility, but dedicate it operation to specific
regions or even a single country, which leads to a set of regional
RESIP ecosystems that can have unique characteristics. Therefore,
another future work is to study other regional RESIP ecosystem
such as RESIP services dedicated to the Russian Internet.
Data release. To facilitate future research, the datasets generated
by this study aremade publicly available on https://rpaas.site.These
datasets include the RESIP IPs of different categories (e.g., back-
connect and direct), the malicious traffic flows involving RESIPs,
as well as the list of identified Chinese RESIP services and English
RESIP services. And we believe these datasets can benefit the com-
munity in terms of reproducing our major results and building up
better tools for studying RESIPs (e.g., the RESIP service classifier).

7 Related Works
Web proxies. A long line of works have looked into the security
issues on web proxy services including residential proxies. Several
works [42][33][24] conducted empirical studies on open web prox-
ies to understand their usage pattern and malicious activities (e.g.,
traffic manipulation). Among them, Weaver et al. [48] carried out
a measurement study to profile free proxy services with a focus
on how they manipulate traffic. Similarly, Chung et al. [8] studied
a paid proxy service to uncover content manipulation in end-to-
end connections. Besides, O’Neill et al. [31] uncovered the preva-
lence of TLS proxies and identified thousands ofmalware intercept-
ing TLS communications. Some other studies are dedicated to web
proxy detection. Zhang et al. [52] proposed a proxy server detec-
tion technique by means of the distinctive characteristics of inter-
active traffic such as packet size and timing. Other works [21, 48]
have developed techniques to detect the presence of web proxies,

https://rpaas.site/


An Extensive Study of Residential Proxies in China CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

such as a proxy localization technique based on traceroutes of the
SYN-ACK packets responding to TCP connection requests.

There are also several works on residential proxies. Mi et al. [25]
reports an empirical study on five residential proxy services in the
English Internet with a focus on profiling their service models and
proxy IPs. Further, Mi et al. [26] studies mobile web proxies with a
focus on detecting mobile proxy programs and identifying proxy
traffic. Also, Akamai revealed in a white paper [44], a previously
unknown attack of harvesting blackbox proxies through NAT in-
jections. Moving forward from these works, we have uncovered
for the first time, the residential proxy ecosystem in China. This
ecosystem consists of 64 Chinese RESIP services, none of which
have been reported or studied before. Also, to identify these RESIP
services, we have designed and implemented a novel NLP-based
classifier to automatically capture residential services across lan-
guages. We have also identified new techniques to capture RESIPs
without relaying traffic through RESIPs. Our study has also dis-
tilled a set of novel findings such as the crest-trough evolution pat-
tern of RESIP services, and the colocation of RESIPS with crypto-
mining and CDN activities.
Cyber threat intelligence. Several works[20, 22, 30] have built
up operational systems to gather cyber threat intelligence from
various sources, ranging from social networks to darknets and deep-
nets. Liao et al. [22] and Zhu et al. [53] mine indicators of com-
promise from security articles by means of NLP-augmented tech-
niques. Besides, Khandpur et al. [20] moves spotlight to gathering
threat intelligence from the social networks while Nunes et al. [30]
is dedicated to hunting threat intelligence from darknets and deep-
nets. Bouwman et al. [7] moves forward to evaluate the coverage
of two commercial threat intelligence platforms and finds out that
There is almost no overlap between the two commercial platforms,
nor with four large open threat intelligence feeds.
Botnets. Botnets have long been studied. For example, Abu et
al.[2] revealed structural and behavioral features of botnets such
as the high churn rate within a botnet. Collins et al. [9] studied
the relationship between botnet and spamming activities. Stone et
al. [40] characterized the personal data theft behavior of the Torpig
botnet. In recent years, several large-scale botnet campaigns have
been extensively studied, especially Mirai [3] and Hajime [17]. Our
study also reveals the co-location of RESIPS with bots of several
large-scale botnets including Ddostf [13], Nitol [29], and Mozi [1].
Cryptojacking. Due to the adoption and prosperity of cryptocur-
rencies, unsolicited cryptomining (cryptojacking) emerges to be-
come an increasing cyber threat. Eskandari et al. [15] and Hong
et al. [18] takes the first steps to profile in-browser cryptojacking.
Naseem et al. [28] steps forward to propose a real-time detection
system targeting cryptojacking. However, all these works are lim-
ited to in-browser cryptojacking, and little understanding is gained
on general cryptojacking across platforms. Despite dedicated to
the Chinese RESIP ecosystem, we have uncovered on residential
network a large volume of cryptomining across cryptocurrencies.
Web classification. A long line of works have explored how to
classifyweb pages into the predefined categories. Dumais et al. [14]
has proposed the use of hierarchical structure along with support
vector machine (SVM) for classifying heterogeneous web content.
Besides, Sun et al.[41] explores the use of both text and context fea-
tures (e.g., hyperlinks) for web classification. Furthermore, Shen et

al.[38] proposes a web classification algorithm based on web sum-
marization. Also, many works have also explored phishing web-
page detection, a subtask of web classification. Liu et al. [49] and Fu
et al. [16] propose the use of web page visual similarity for phish-
ing webpage detection. Moving forward, Xiang et al.[51] presents
a hybrid methodology to detect phishing websites by means of in-
formation extraction and information retrieval, while Whittaker
et al. [50] presents the design and performance characteristics of a
machine learning classifier deployed in Google to detect phishing
web pages. Different from previous work, this classifier is learned
from noisy data but still correctly classifies more than 90% of phish-
ing pages several weeks after training concludes. In addition, Mo-
hammad et al. [27] explores how rule-based datamining techniques
can be applicable to phishing web page detection while Opara et
al. [32] explores the use of deep learning into this task along with
good performance achieved. Taking lessons from these website
classification works especially ones on phishing webpage detec-
tion, we move forward and have pursued the task of RESIP website
detection. In our detection pipeline, we utilize search engines to
pre-filter irrelevant candidates, compose a representative groundtruth
dataset leveraging a cycle of training and evaluation, design and
select out a set of novel keyword-based features using tf-idf, and
build up an effective machine learning classifier.

8 Concluding Remarks
In this study, we carry out the first extensive study on the China

RESIP ecosystem. Our study has identified several largest-ever RE-
SIP datasets, revealed a set of insightful findings, and raised several
security concerns. Particularly, we have built up an effective RESIP
website classifier as part of a pipeline to automatically capture RE-
SIP services, which leads to the discovery of 399 RESIP services, 10
times more than ones identified in all previous works. Also, new
techniques are developed to capture and monitor RESIPs in a con-
tinuous and low-cost manner. We believe the novel techniques de-
veloped, the RESIP datasets generated, and the findings distilled
will benefit future research in the relevant areas.
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