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ABSTRACT
IFTTT is a popular trigger-action programming platform whose
applets can automate more than 400 services of IoT devices and
web applications. We conduct an empirical study of IFTTT using
a combined approach of analyzing data collected for 6 months
and performing controlled experiments using a custom testbed.
We profile the interactions among different entities, measure
how applets are used by end users, and test the performance of
applet execution. Overall we observe the fast growth of the IFTTT
ecosystem and its increasing usage for automating IoT-related tasks,
which correspond to 52% of all services and 16% of the applet usage.
We also observe several performance inefficiencies and identify
their causes.
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1 INTRODUCTION
Consumer Internet of Things (IoT) devices such as smart home
gadgets are becoming increasingly popular. For example, Amazon
has sold more than 5 million Amazon Echo devices in just two
years since their debut in late 2014 [1]. Among many challenges
faced by today’s consumer IoT systems, policy management plays a
critical role in ensuring scalable, automated, secure, and resource-
efficient interactions among devices. Take smart home as an
example. In our measurement (§3), we observe more than 20 types
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of smart home devices such as light, security camera, thermostat,
A/C, washing machine, sprinkler, doorbell, garage door, lock,
refrigerator, and even smart egg tray [6]. These devices are highly
heterogeneous in terms of their vendors, form factors, computation
power, networking capabilities, and programming interfaces. It
is non-trivial to manage each device separately, letting alone
managing proper policies to coordinate them to accomplish complex
tasks.

In this paper, we conduct an empirical characterization of IFTTT
(IF This Then That [4]), a task automation platform for IoT and
web services. Through IFTTT, end users can easily create policies
that connect IoT devices or bridge IoT devices with web services
such as “add ‘buying eggs’ to my iPhone reminder when there are
no more than 3 eggs in the fridge”. We select IFTTT because it
is the most popular one among a plethora of commercial task
automation platforms [2, 10, 11, 13–15]. As of early 2017, IFTTT
has more than 320,000 automation scripts (called “applets”) offered
by more than 400 service providers. The applets have been installed
more than 20 million times. More importantly, unlike other task
automation platforms that are mainly dedicated to web services,
more than half of IFTTT services are IoT devices related, as to be
measured in §3.2. This makes IFTTT a perfect platform to profile
the interactions between web services and IoT devices. The success
of IFTTT is attributed to several technical factors. First, it employs
very simple trigger-action API (TAP [18, 23]); end users only need
to specify a trigger and an action to construct an applet. Second,
IFTTT supports both IoT and non-IoT services using a unified
HTTP RESTful interface. Third, it uses crowdsourcing to enrich
the applet library by allowing users to create applets and sharing
them with other users.

Despite the popularity of IFTTT, there is a lack of systematic
understanding of its ecosystem, usage, and performance. The
goal of this paper is thus to perform in-depth studies of these
important aspects. However, our measurement study faces several
challenges. First, the IFTTT ecosystem involves multiple policy
stakeholders (e.g., end users, IoT devices, service providers, web
applications, and the IFTTT engine itself) incurring complex
interactions. Second, observing only from end users’ perspective
has limited visibility, and thus is challenging to gain insights
into what happens “under the hood” for applet execution. Third,
conducting long-term measurement against IFTTT faces several
practical challenges such as automation.

To address the above challenges, we built a testbed to automat-
ically monitor and profile the whole process of applet execution.
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To further explore potential performance bottlenecks and to char-
acterize interactions between different entities, we launched our
own IFTTT service that controls our home-deployed IoT devices
and third-party web services. The testbed along with our own
IFTTT service enable us to interact with IFTTT from both end
users’ and service providers’ perspectives, and to instrument the
applet execution at multiple vantage points.

We then study the usage of IFTTT in the wild by collecting and
analyzing its services and applets for six months. We found that
52% of services and 16% of applet usage are IoT-related. With more
than 200 IoT services identified, IFTTT indeed provides a way to
identify popular smart home and wearable devices on the market
in a “centralized” manner. We further provide detailed taxonomies
of services and their interactions, as well as characterize how users
contribute to IFTTT’s applet library.

We further go beyond passive measurements by conducting
in-lab controlled experiments to understand the applet execution
performance. Our results suggest that actions of many applets
(including some “realtime” applets such as turning on the light
using a smart switch) cannot be executed in real time when their
triggers are activated. The delays are long (usually 1 to 2 minutes)
with huge variance (up to 15 minutes). We found the delay is caused
by IFTTT’s long polling interval. We also study the scenarios when
multiple applets execute sequentially and concurrently, and find
their performance is often suboptimal. For example, chained applets
can form explicit and implicit “infinite loops”, causing resource
waste or even damage of the physical devices.

Overall, this paper makes three major contributions: (1) de-
veloping a measurement testbed with self-implemented IFTTT
service and using them to profile the IFTTT ecosystem (§2), (2)
conducting an in-depth characterization of service and applet
usage (§3), and (3) using the testbed to measure the IFTTT applet
execution performance (§4). Based on our findings, we provide
recommendations in §6. We summarize related work and conclude
the paper in §5. All data and code in this project can be found at:

https://www.cs.indiana.edu/~fengqian/ifttt_measurement

2 UNDERSTANDING THE ECOSYSTEM
IFTTT is a trigger-action programming (TAP) platform [18, 23]
that allows end users to create conditional rules in the form of “if
A then B” where A is called a trigger, B is called an action, and
the entire rule is called an applet. Triggers and actions are often
provided by IoT vendors and web service providers. The applets are
constructed by users via picking triggers and actions from (usually
different) third-party partner services (or services for short)1. A
service abstracts functionalities provided by web applications or
IoT devices, and it usually provides multiple triggers and actions.
For example, consider the following applet: automatically turn your
hue lights blue whenever it starts to rain. In this applet, the trigger
(raining) is from the weather service and the action (changing the
hue light color) belongs to the service provided by Philips Hue [8], a
smart LED lamp vendor. A service usually exposes multiple triggers
and/or actions. Both the trigger and action may have fields (i.e.,
parameters) that customize the applet, such as the light color.

1Historically, an applet and a service in IFTTT were called “recipe” and “channel”,
respectively. We do not use these old names.
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Figure 1: Our IFTTT testbed.

2.1 The Measurement Testbed
Multiple entities play roles in the IFTTT ecosystem: the centralized
IFTTT engine executes the applet by contacting and coordinating the
services; partner services (such as Philips Hue) respond to IFTTT’s
requests by testing the trigger condition or executing the action;
IoT devices and web applications are controlled by the services
to implement the policy; finally, end users can define the applets
through IFTTT’s mobile app or web interfaces.

The above players incur potentially complex interactions. To
understand them, we set up a measurement testbed using IFTTT,
commodity IoT devices, and commercial web apps. From the
measurement perspective, a challenge here is that an end user is
sitting at the “edge” of the ecosystem and henceforth does not have
visibility of how partner services interact with the IFTTT engine.
To overcome this limitation, we obtained a service provider testing
account from IFTTT. By doing so, we essentially become a service
provider partnering with IFTTT and can publish our own services.
Our services support triggers and actions for both IoT devices and
web applications. For the former, we purchased four popular off-
the-shelf smart home devices: Philips Hue smart lights, WeMo Light
Switch (programmatically controlling any home light), and Amazon
Echo Dot (smart speaker connecting to Alexa, Amazon’s personal
assistant service), and Samsung SmartThings Hub (controlling
various home appliances). Our testbed also supports several web
applications such as Gmail and Google Drive.

For each of the above smart devices and web apps, our service
leverages its API to get and set its states. We illustrate this using
Philips Hue as an example. As shown in Figure 1, we run our service
on a server ❺ in our lab. The actual Hue lamp ❶ and its hub (i.e.,
controller, ❷) are located at an author’s home. For security, most
home deployed devices only accept access from a 3rd-party host
in the same LAN so we deployed in the home LAN a local proxy
❸ which acts as a bridge for communication between our service
server and local devices. Our local proxy communicates with the
devices through different protocols such as the Hue RESTful Web
API [9] for the Hue hub and UPnP (Universal Plug and Play) [? ] for
the Wemo Switch. We design a custom protocol between the local
proxy ❸ and our service server ❺ both of which we have control.
Then, The communication path between the lamp and our service
is thus Hue Lamp ❶–Hue Hub ❷–Local Proxy ❸–Gateway Router
❹–Our Service Server ❺. Note that for the official Hue service ❻, it
can directly talk to the hub using a proprietary protocol so the path
is Hue Lamp ❶– Hue Hub ❷– Gateway Router ❹– Hue Service ❻.
Our service server ❺ and the IFTTT engine ❼ communicate using
the IFTTT’s web-based protocol [5]. The services for other smart
home devices are developed in a similar manner. For web apps, our

https://www.cs.indiana.edu/~fengqian/ifttt_measurement
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service directly talks with Google using its App API [3]. Our overall
implementation efforts for the testbed involve 1620 LoCs in PHP
and 2900 LoCs in Python. The Test Controller ❾ automates the
controlled experiments to be described in §4.

2.2 Profiling Interactions Among Entities
We leveraged the testbed and self-implemented IFTTT service
to profile the interactions among the entities within the IFTTT
ecosystem. The high-level approach is to monitor the message
exchanges at our vantage points (e.g., Our service server ❺ and the
local proxy ❸ in Figure 1). It seems that the interactions can be
obtained from the IFTTT documentation. However, we emphasize
that an experimental approach is necessary for several reasons: it
helps verify the actual system behavior and detect any deviation or
unexpected behaviors; it provides details not revealed by the spec; it
also quantifies the system performance and pinpoints inefficiencies
as to be detailed in §4 and §6. We next describe our observations.
• To publish our service, our service server ❺ exposes to IFTTT ❼
a base URL such as https://api.myservice.com and other options
such authentication configurations. Each trigger or action has a
unique URL under the base URL, such as https://api.myservice.com/
ifttt/actions/turn_on_light. IFTTTwill generate for the service a
key, which will be embedded in future message exchanges between
our service server ❺ and IFTTT ❼ for authentication.
• To construct an applet, the user ❽ directly visits IFTTT ❼ using
web or smartphone app, and selects the trigger/action services,
the trigger/action, and their fields. Many triggers/actions need to
authenticate the user. This is done using the OAuth2 framework [7].
The user will be directed to the authentication page that is usually
hosted by service providers and asked for her credentials. An access
token will be generated and cached at IFTTT ❼ to make future
applet execution fully automated.
• In the online applet execution phase, IFTTT ❼ periodically polls
the trigger service (e.g., Our service server ❺). The polling query is
encapsulated into an HTTPS POST message (with the access token,
the service key, and a random request ID) sent to the trigger URL.
The trigger service will then determine if the trigger condition
is met by either active polling or having the target device/app
push trigger events (our testbed uses the push approach for IoT
devices and the polling approach for web apps). If the trigger is
activated, the trigger service will notify IFTTT❼ (passively through
responding the poll from IFTTT ❼), which will, in turn, contact the
action URL. Finally, the action service will execute the action.

3 UNDERSTANDING IFTTT USAGE
To gain a holistic view of IFTTT usage, we crawl its services,
triggers, actions, and applets. We describe the data collection
methodology in §3.1 and our findings in §3.2.

3.1 Data Collection Methodology
To begin with, we parse the IFTTT partner service index page
to get a list of all services. Then through reverse engineering
the URLs of applets’ pages, we observe that the URLs can be
systematically retrieved by enumerating a six-digit applet ID. Using
this method, wemanaged to fetchmore than 300K published applets.
For each applet, we retrieved the following information from its
page: applet name, description, trigger, trigger service (the service

Table 1: Breakdown of IFTTT partner services.
Service % Se- Trigger Action
Category rvices AC % AC %
1. Smarthome devices (e.g., Light, 37.7% 6.4% 7.9%
thermostat, camera, Amazon Echo)
2. Smarthome hub / integration 9.3% 0.8% 1.0%
solution (e.g., Samsung SmartThings)
3. Wearables (e.g., smartwatch, band) 2.7% 1.6% 1.0%
4. Connected cars (e.g., BMW Labs) 2.0% 0.5% 0.1%
5. Smartphones (e.g., battery, NFC) 3.7% 11.0% 13.8%
6. Cloud storage (e.g., Google Drive) 2.5% 0.6% 13.6%
7. Online service and content 8.8% 20.0% 1.9%
providers (e.g., weather, NYTimes)
8. RSS feeds, online recommendation 2.2% 9.8% 0.1%
9. personal data & schedule manager 10.3% 11.2% 27.4%
(e.g., note taking, reminder)
10. Social networking, blogging, 5.6% 17.7% 17.3%
photo/video sharing (e.g., Facebook)
11. SMS, instant messaging, team 4.7% 0.8% 3.1%
collaboration, VoIP (e.g., Skype)
12. Time and location 1.2% 14.1% 0.0%
13. Email 1.0% 4.4% 12.8%
14. Other 8.3% 1.3% 0.2%

Table 2: Compare our IFTTT dataset with [28].
Aspect Our Dataset The Dataset of [28]

# Applets 320K 224K
# Channels 408 220
# Triggers 1490 768
# Actions 957 368

# Adoptions 24 millions 12 millions
# Applet Contributors 135K 106K

# Snapshots 25, one each week 1
Duration Nov 2016 to Apr 2017 Sep 2015

that the trigger belongs to), action name, action service, and add
count. Add count is the number of this applet being installed by
users. It quantifies the popularity of an applet and is similar to the
installation count of a mobile app.

We implemented the above data collection tool. Every week from
November 2016 to April 2017, we used the tool to take a “snapshot”
of the IFTTT ecosystem by performing the aforementioned crawl-
ing. About 200 GB data was collected during the six-month period
(∼12GB each snapshot). Note our data only contains the applets that
are publicly shared, as opposed to users’ private applets. Previous
IFTTT measurements [27, 28] also share this limitation. Note that
the crawling methodology is conceptually similar to the one used
by [28], but we captured a much larger dataset for a longer period
as shown in Table 2.

3.2 Data Characterization
We now analyze the data to reveal the up-to-date landscape of
IFTTT usage. First we notice that across the weekly snapshots
collected over the six-month period, services and applets kept
growing steadily. Compared to 11/24/2016, on 4/1/2017, the number
of services, triggers, actions, and applet add count increase by 11%,
31%, 27%, and 19%, respectively, indicating the IFTTT platform is
gaining popularity. Next, without loss of generality, we characterize
a particular snapshot collected on 3/25/2017 where the number
of services, triggers, actions, applets, and total add counts are
408, 1490, 957, 320K, and 23M respectively. We also notice the
significant increase of the applet size compared to prior studies: 67K
in 6/2013 [27], 224K in 9/2015 [28], and ∼320K in our dataset.

Service Semantics. For each service, we examine its service
description, trigger list, action list, and its external website if needed.
We then classify the service into one of the 13 categories listed
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in Table 1 based on our domain knowledge. Given the number of
services is moderate (∼400), the classification was done manually to
ensure its accuracy. In Table 1, Service Category 1 to 4 relate to IoT
devices, including controlling specific smart home devices, general
smart home hubs/controllers, wearable devices, and connected cars.
Within Category 1, we observed more than 20 types of devices
as exemplified in §1. Category 5 to 13 belong to non-IoT services
such as web applications, cloud storage, RSS feeds, smartphone,
email, time, and location. For each service category, Table 1 lists (in
percentage) its number of services, its trigger add count (i.e., the
total add count of applets whose triggers belong to a service within
this category), and its action add count. Overall, we find that the
services provided by IFTTT are extraordinarily rich.More than half
(51.7%) of services are for IoT devices. They account for 16% of the
overall IFTTT applet usage (based on the add count). This again
contrasts the most recent IFTTT measurement in 2015 [28], which
barely observed IoT related channels and recipes (i.e., services and
applets).

IoT Usage. Table 3 lists the top IoT-related trigger services,
action services, triggers, and actions. Based on their add counts, the
top-3 services are Alexa (Amazon’s intelligent personal assistant for
smart home devices like Amazon Echo), Philips Hue (smart lighting),
and Fitbit (a wearable activity tracker), followed by other popular
gadgets such as Nest Thermostat and Google Assist – IFTTT indeed
provides away to identify popular smart home andwearable devices
on the market as well as their key usage scenarios in a “centralized”
manner (assuming their vendors publish partner services). The vast
majority of triggers and actions (e.g., “turn on light”) and henceforth
their applets are rather simple, due to the simple interfaces exposed
by most IoT devices, as well as the fact that most tasks (in the smart
home context) we want to automate are indeed simple [27]. Figure 2
plots a heat map illustrating the interaction among different service
categories. The intensity of the color block at Row i and Column j
indicates the add count of applets whose trigger and action belong
to service category i and j, respectively. We find that IoT services
may serve as both triggers (usually paired with service categories
of 1, 5, 9) and actions (paired with service categories of 1, 7, 9, 12).

Regarding non-IoT services, as illustrated in Table 1 and Figure 2,
popular services used as triggers include social networks (Category
10), online services (Cat. 7), RSS feeds (8), and time/location (12).
Many content providers such as YouTube and NYTimes have their
own IFTTT partner services. For actions, unlike IoT actions that
usually perform device control, non-IoT actions are mostly used
to notify users via push notification/email (Cat. 9), to log events to
cloud storage (6), or to publish posts to social networks (10).
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Applet Properties. Now we shift our focus from services to
applets. Figure 3 quantifies the overall applet usage by ranking the
applets (X-Axis) by their add count (Y-Axis). It exhibits a heavy-tail
distribution: the top 1% (10%) of applets contribute 84.1% (97.6%)
of the overall add count. We thus next focus on the top applets.
For non-IoT applets whose neither trigger nor action relates to
IoT, we observe several top use cases such as syncing different
social networks, getting notifications from online services, and
triggering actions at certain time/locations. For IoT applets whose
either trigger or action relates to IoT, IFTTT acts as a virtual smart
home hub in the cloud by coordinating smart home devices (e.g.,
Amazon Echo and lights). More interestingly and commonly, IFTTT
helps bridge IoT devices with non-IoT services in the cloud.

In IFTTT, besides service providers, an end user can also create
her applets and share them with other users by publishing them
on her “channel”. In our dataset, we observe 135,544 user channels,
which is several orders of magnitude more compared to the number
of services (around 400). Although triggers and actions can only be
provided by services, most applets (98%) are home-made by users.
The number of published applets per user also follows a heavy-tail
distribution: the top 1% (10%) of users contribute 18% (49%) of all
applets. Also 86% of add count belong to user-made applets, which
thus dominate the applet usage.

4 APPLET EXECUTION PERFORMANCE
This section measures the performance of IFTTT by conducting
controlled experiments.

Trigger-to-Action (T2A) Latency is a key performance metric
for applet execution. It is the delay from time TT when the trigger
condition is met to time TA when the action is executed. We pick
seven popular applets A1 to A7 listed in Table 4 and measure their
T2A latency using our testbed in §2.1. All these applets were created
and deployed using regular user accounts. They are chosen to
cover a variety of IoT devices and their interactions with web
services: A1 to A4 cover different usage scenarios (IoT→WebApp,
IoT→IoT, WebApp→IoT, and WebApp→WebApp); A5 to A7 use
Amazon Alexa as the trigger, which will be found to be treated
specially by IFTTT. To facilitate the experiments, we introduce
in Figure 1 a Test Controller ❾ that serves two roles. First, it
automates the experiments by activating the trigger. For example,
to programmatically control Alexa, it plays pre-recorded voice
commands. The second role of ❾ is to measure the T2A latency by
recording TT and TA.

Figure 4 shows the T2A latency for the seven applets using the
official IFTTT partner services (e.g., Hue Service ❻ as opposed to
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Table 3: Top trigger services, action services, triggers, and actions involving IoT. Add count (in million) are shown in parentheses.

Top Trigger Services Top Action Services Top Triggers Top Actions
Amazon Alexaa (1.2) Philips Hueh (1.2) Say a phrase (Alexa) Turn on lights (Hue)
Fitbitb (0.2) LIFXi (0.2) Item added to todo list (Alexa) Change color (Hue)
Nest Thermostatc (0.1) Nest Thermostatc (0.2) Say a phrase (Google Assistant) Blink lights (Hue)
Google Assistantd (0.1) Harmony Hubj (0.2) Ask what’s on shopping list (Alexa) Turn on color loop (Hue)
UP by Jawbonee (0.1) WeMo Smart Plugk (0.1) Daily activity summary (Fitbit) Set temperature (Nest Thermostat)
Nest Protectc (.07) Android Smartwatch (0.1) Item added to shopping list (Alexa) Start activity (Harmony Hub)
Automaticf (.06) UP by Jawbonee (.09) New sleep logged (Fitbit) Send a notification (Android watch)
ahttps://www.amazon.com/echo b https://www.fitbit.com/ c https://nest.com/ d https://assistant.google.com/ e https://jawbone.com/ f https://www.automatic.com/
hhttp://www2.meethue.com i https://www.lifx.com/ j https://www.logitech.com/harmony-hub k http://www.belkin.com/us/F7C030/p/P-F7C030/

Table 4: Popular applets used in controlled experiments.

A1 If my Wemo switch is activated, add line to spreadsheet.
A2 Turn on my Hue light from the Wemo light switch.
A3 When any new email arrives in gmail, blink the Hue light.
A4 Automatically save new gmail attachments to google drive.
A5 Use Alexa’s voice control to turn off the Hue light.
A6 Use Alexa’s voice control to actviate the Wemo switch.
A7 Keep a google spreadsheet of songs you listen to on Alexa.

Table 5: Example of applet execution timeline: A2 under E2.

t (s) Event Description
0 Test controller ❾ sets the trigger event

0.04 Custome Proxy ❸ observes the trigger event and notifies Our Server ❺
0.16 ❸ receives the confirmation from trigger service ❺
81.1 IFTTT engine ❼ polls trigger service ❺ about the trigger
82.1 IFTTT engine ❼ sends action request to action service ❺
83.0 Aftering querying ❺, ❸ sends the action to the IoT device
83.8 Test controller ❾ confirms that the action has been executed

Our Service ❺). Over a period of three days, the testbed executed
each applet 50 times at different time. Before each test, we ensure
both local WiFi and the Internet connectivity are good through
active probing so the network never becomes the performance
bottleneck. For better visualization, we group the latency ofA1 toA4
and A5 to A7 together, because within each group the performance
is qualitatively similar.We first examineA1 toA4. Their T2A latency
values are not only large, but also highly variable, with the 25-th,
50-th, and 75-th percentiles being 58s, 84s, and 122s, respectively.
This may not be a big issue for “non-real-time” applets such as A4,
However, for applets likeA2 (using a smart switch to turn on a light),
such a long and highly variable latency degrades user experience.
In the extreme case, the T2A latency can reach 15 minutes.

To find out the cause of such high latency and variance, we
replace the involved service entities with our own implementation,
which is known to be performance-wise efficient. We design the
following three experiments and run them on our testbed.
• E1: replace the official trigger service (e.g., Hue Service ❻) with
Our Service ❺.
• E2: replace the trigger and action services with Our Service ❺.
• E3: in addition to E2, further replace the IFTTT engine ❼ with our
own implementation that follows the IFTTT protocol and performs
frequently polling (every 1 second).

Figure 5 plots the T2A latency for A2 under scenarios E1/E2 and
E3 (for each scenario we run 20 tests). The results clearly indicate
that the performance bottleneck is the IFTTT engine itself, as E3
dramatically reduces the T2A latency compared to E1 and E2 that
exhibit similar performance. Specifically, we observe that IFTTT
employs very long polling interval that dominates the overall T2A
latency. To illustrate this, Table 5 exemplifies the breakdown of the
T2A latency for a typical execution of applet A2 under the scenario
E2. As shown, our service ❺ is notified about the trigger event at

0 100 200 300 400
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0 500 1000
store gmail attachment to google drive

Time (second)
Figure 6: Two examples of sequen-
tial applet execution.
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t=0.16 sec; but the polling request from the IFTTT engine ❼ arrives
much later at t=81.1 sec.

Besides performing regular polling, IFTTT also provides real-
time API, which allows a trigger service to proactively send a
notification to IFTTT about a trigger event. Through experiments,
we find that using the real-time API brings no performance impact
for our service (figure not shown). Note the real-time API merely
provides hints to the IFTTT engine, which still needs to poll the
service to get the trigger event delivered. In other words, the IFTTT
engine has full control over trigger event queries and very likely
ignores real-time API’s hints. We provide more discussions in §6.

Another observation relates to the low T2A latency of A5 to A7
in Figure 4. Since they all use Alexa as the trigger, it is likely that
IFTTT customizes the polling frequency or more likely, processes
the real-timeAPI hints for some services (such as Alexa) with timing
requirements. But as indicated by our previous results (e.g., A2),
such customization does not yet cover all applets requiring low
latency. When we use our own service to host Alexa, its latency
becomes large.

Sequential Execution of Applets. We next test the perfor-
mance when a trigger is activated multiple times sequentially (every
5 seconds in our experiment). As exemplified in the top part of
Figure 6, due to the long and highly variable polling latency, 119
seconds later, the action associated with the first trigger is executed
together with a cluster of subsequent actions. The second and third
cluster come at 247 and 351 seconds respectively. The actions are
sequentially mapped to triggers but the actions’ timing is “reshaped”
by IFTTT. Such a clustered pattern, which is observed from all
triggers for A1 to A4, is caused by the batched process of IFTTT
polling. Upon receiving a polling query, the trigger service should
return many buffered trigger events (up to k) to IFTTT. k is a
parameter in the polling query (50 by default). Because each polling
query response contains multiple trigger events, the resulting
actions naturally form a cluster. The bottom part of Figure 6 shows
one extreme case (possibly when IFTTT experiences highworkload)
where the polling delay between two clusters inflate to 14 minutes.
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Concurrent Execution of Applets. Users can create two
applets with the same trigger, say “if A then B” and “if A then
C” to realize “if A then B and C”. When A is triggered, ideally B
and C should be executed at the same time. Figure 7 plots the CDF
for T2A latency difference between “turn on Hue light when email
arrives” and “activate WeMo switch when email arrives”, which
share the same trigger, across 20 tests. As shown, the T2A latency
difference ranges from -60 to 140 seconds. This is because (1) the
polling delay is highly fluctuating, and (2) the polling response
of one applet cannot be piggybacked with that of another applet.
The results indicate that in reality, IFTTT cannot guarantee the
simultaneous execution of two applets with the same trigger. This
may cause unexpected results to end users (e.g., a user wants to use
a smart switch to turn on the heat and close the window).

Infinite Loop. Multiple applets can be chained in IFTTT. How-
ever, users may misconfigure chained applets to form an “infinite
loop” e.g., A triggers B, which further triggers A. An infinite
loop may waste resources and even damage the IoT equipment.
Through experiments, we confirm that despite a simple task, no
“syntax check” is performed by IFTTT to detect a potential infinite
loop. Furthermore, we also experimentally confirm that an infinite
loop may be jointly triggered by IFTTT and 3rd-party automation
services. For example, a user applies the following IFTTT applet:
add a row in my Google Spreadsheet when an email is received.
Meanwhile, the user has also enabled in her spreadsheet the
notification feature [12], which sends her an email if the spreadsheet
is modified. The applet and the enabled notification thus cause an
implicit infinite loop. Since IFTTT is not aware of the latter, it
cannot detect the loop by analyzing the applets offline. Instead,
some runtime detection techniques are needed.

5 RELATEDWORK
IFTTT Characterization. Ur et al. investigated the human factor
of trigger-action programming in smart home [27]. As a part of
the study, they collected 67K IFTTT recipes (i.e., applets) in 2013
to demonstrate that users can possibly create a large number of
combinations of triggers and actions. A follow-up CHI note [28]
by the same authors analyzed basic statistics of 224K IFTT recipes
crawled in 2015. Surbatovich et al. [25] used the dataset of [28] to
analyze the security and privacy risks of IFTTT recipes. Huang et
al. [19] investigated how to make IFTTT-style TAP better fit users’
mental model. Our study distinguishes from the above in several
aspects. First, we provide an up-to-date characterization of the
IFTTT ecosystem with new observations that differ from previous
measurements (e.g., the dominance of IoT services described in §3.2).
Second, we build a real IFTTT testbed and show the interaction
among different entities in the ecosystem. Third, we conduct
experiments to analyze the applet execution performance.

IFTTT-like Platforms. There also exist commercial platforms
such as Atooma [2], WigWag [14], Android Tasker [11], Zipato [15],
Stringify [10] and WayLay [13]. Some use more complex languages
such as flowchart [10] or even Bayesian Networks [13]. All of them
have registered less popularity compared to IFTTT.

Trigger-action Programming (TAP) has been studied for
more than a decade. It is oftentimes used in automation for smart
homes [17, 21, 26, 29, 30], smart buildings [22], and general IoT/context-
aware systems [16, 18, 20, 23]. We instead conduct an empirical
study of IFTTT, the most popular commercial TAP platform [19].

6 DISCUSSIONS AND CONCLUSIONS
Performance Improvements. We observe that oftentimes the
T2A latency, which is dominated by the polling delay, is long and
highly variable2. Instead of doing polling, an effective way to reduce
the latency is to perform push (or utilize the real-time API with
the same concept). However, we believe there are reasons why
IFTTT has not yet fully adopted this approach3. One reason we can
possibly imagine is that, if all trigger services perform push, the
incurred instantaneous workload may be too high: IoT workload is
known to be highly bursty [24]; for IFTTT it is likely also the case
(consider popular applets such as “update wallpaper with new NASA
photo”). On the other hand, this creates opportunities for predicting
the trigger events to perform polling smartly or provisioning the
resources for accepting more real-time hints. Such optimizations
only need to apply to top applets that dominate the usage (Figure 3).

Distributed Applet Execution. For now, all applet executions
need to be handled by the centralized IFTTT engine. In fact, many
applets can be executed fully locally by using users’ smartphones
or tablets as a local IFTTT engine. In this way, the scalability of
the system can be dramatically improved. Nevertheless, designing
such a hybrid (centralized + distributed) applet execution scheme
is challenging in many aspects: what are users’ incentives for
adopting the local version (maybe better privacy or operating
without Internet)? How to determine which applets to execute
locally? How to quickly recover when the local IFTTT engine goes
down? More research is needed in this direction.

Permission Management. We notice that IFTTT performs
coarse-grained permission control at the service level: for a service
involved in any trigger or action installed by the user, IFTTT will
need all permissions of the service. For example, installing an
applet with the trigger “new email arrives” requires permissions
for reading, deleting, sending, and managing emails. This facilitates
the usability (as the user will not be bothered when future applets
involving the same service are installed) but incurs potential
security issues (as the “least privilege principle” is violated). We
need better permission management schemes that balance the
tradeoff between usability and security.

Limitations.We acknowledge that observing the IoT ecosystem
from the perspective of IFTTT is interesting but still limited as
IFTTT may not cover all available IoT devices and their owners.

To conclude, in this study, we observe the fast growth of the
IFTTT ecosystem and its increasing usage for automating IoT-
related tasks, which correspond to 52% of services and 16% of the
applet usage. We observe several performance inefficiencies and
identify their causes. We plan to study future IFTTT features such
as queries and conditions [25].
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2We contacted IFTTT and they confirmed this issue.
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